179 research outputs found

    Alpha synuclein post translational modifications: potential targets for Parkinson’s disease therapy?

    Get PDF
    Parkinson’s disease (PD) is the most common neurodegenerative disorder with motor symptoms. The neuropathological alterations characterizing the brain of patients with PD include the loss of dopaminergic neurons of the nigrostriatal system and the presence of Lewy bodies (LB), intraneuronal inclusions that are mainly composed of alpha-synuclein (α-Syn) fibrils. The accumulation of α-Syn in insoluble aggregates is a main neuropathological feature in PD and in other neurodegenerative diseases, including LB dementia (LBD) and multiple system atrophy (MSA), which are therefore defined as synucleinopathies. Compelling evidence supports that α-Syn post translational modifications (PTMs) such as phosphorylation, nitration, acetylation, O-GlcNAcylation, glycation, SUMOylation, ubiquitination and C-terminal cleavage, play important roles in the modulation α-Syn aggregation, solubility, turnover and membrane binding. In particular, PTMs can impact on α-Syn conformational state, thus supporting that their modulation can in turn affect α-Syn aggregation and its ability to seed further soluble α-Syn fibrillation. This review focuses on the importance of α-Syn PTMs in PD pathophysiology but also aims at highlighting their general relevance as possible biomarkers and, more importantly, as innovative therapeutic targets for synucleinopathies. In addition, we call attention to the multiple challenges that we still need to face to enable the development of novel therapeutic approaches modulating α-Syn PTMs

    Living in Promiscuity: The Multiple Partners of Alpha-Synuclein at the Synapse in Physiology and Pathology.

    Get PDF
    Alpha-synuclein (α-syn) is a small protein that, in neurons, localizes predominantly to presynaptic terminals. Due to elevated conformational plasticity, which can be affected by environmental factors, in addition to undergoing disorder-to-order transition upon interaction with different interactants, α-syn is counted among the intrinsically disordered proteins (IDPs) family. As with many other IDPs, α-syn is considered a hub protein. This function is particularly relevant at synaptic sites, where α-syn is abundant and interacts with many partners, such as monoamine transporters, cytoskeletal components, lipid membranes, chaperones and synaptic vesicles (SV)-associated proteins. These protein⁻protein and protein⁻lipid membrane interactions are crucial for synaptic functional homeostasis, and alterations in α-syn can cause disruption of this complex network, and thus a failure of the synaptic machinery. Alterations of the synaptic environment or post-translational modification of α-syn can induce its misfolding, resulting in the formation of oligomers or fibrillary aggregates. These α-syn species are thought to play a pathological role in neurodegenerative disorders with α-syn deposits such as Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA), which are referred to as synucleinopathies. Here, we aim at revising the complex and promiscuous role of α-syn at synaptic terminals in order to decipher whether α-syn molecular interactants may influence its conformational state, contributing to its aggregation, or whether they are just affected by it

    Changes in α-Synuclein Posttranslational Modifications in an AAV-Based Mouse Model of Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) pathology is characterized by the loss of dopaminergic neurons of the nigrostriatal system and accumulation of Lewy bodies (LB) and Lewy neurites (LN), inclusions mainly composed of alpha-synuclein (alpha-Syn) fibrils. Studies linking the occurrence of mutations and multiplications of the alpha-Syn gene (SNCA) to the onset of PD support that alpha-Syn deposition may play a causal role in the disease, in line with the hypothesis that disease progression may correlate with the spreading of LB pathology in the brain. Interestingly, LB accumulate posttranslationally modified forms of alpha-Syn, suggesting that alpha-Syn posttranslational modifications impinge on alpha-Syn aggregation and/or toxicity. Here, we aimed at investigating changes in alpha-Syn phosphorylation, nitration and acetylation in mice subjected to nigral stereotaxic injections of adeno-associated viral vectors inducing overexpression of human alpha-Syn (AAV-h alpha-Syn), that model genetic PD with SNCA multiplications. We detected a mild increase of serine (Ser) 129 phosphorylated alpha-Syn in the substantia nigra (SN) of AAV-h alpha-Syn-injected mice in spite of the previously described marked accumulation of this PTM in the striatum. Following AAV-h alpha-Syn injection, tyrosine (Tyr) 125/136 nitrated alpha-Syn accumulation in the absence of general 3-nitrotirosine (3NT) or nitrated-Tyr39 alpha-Syn changes and augmented protein acetylation abundantly overlapping with alpha-Syn immunopositivity were also detected

    The Contribution of -Synuclein Spreading to Parkinson’s Disease Synaptopathy

    Get PDF
    Synaptopathies are diseases with synapse defects as shared pathogenic features, encompassing neurodegenerative disorders such as Parkinson’s disease (PD). In sporadic PD, the most common age-related neurodegenerative movement disorder, nigrostriatal dopaminergic deficits are responsible for the onset of motor symptoms that have been related to -synuclein deposition at synaptic sites. Indeed, -synuclein accumulation can impair synaptic dopamine release and induces the death of nigrostriatal neurons. While in physiological conditions the protein can interact with and modulate synaptic vesicle proteins and membranes, numerous experimental evidences have confirmed that its pathological aggregation can compromise correct neuronal functioning. In addition, recent findings indicate that -synuclein pathology spreads into the brain and can affect the peripheral autonomic and somatic nervous system. Indeed, monomeric, oligomeric, and fibrillary -synuclein can move from cell to cell and can trigger the aggregation of the endogenous protein in recipient neurons. This novel “prion-like” behavior could further contribute to synaptic failure in PD and other synucleinopathies. This review describes the major findings supporting the occurrence of -synuclein pathology propagation in PD and discusses how this phenomenon could induce or contribute to synaptic injury and degeneration

    Acetylated α-Tubulin and α-Synuclein: Physiological Interplay and Contribution to α-Synuclein Oligomerization

    Get PDF
    Emerging evidence supports that altered α-tubulin acetylation occurs in Parkinson’s disease (PD), a neurodegenerative disorder characterized by the deposition of α-synuclein fibrillary aggregates within Lewy bodies and nigrostriatal neuron degeneration. Nevertheless, studies addressing the interplay between α-tubulin acetylation and α-synuclein are lacking. Here, we investigated the relationship between α-synuclein and microtubules in primary midbrain murine neurons and the substantia nigra of post-mortem human brains. Taking advantage of immunofluorescence and Proximity Ligation Assay (PLA), a method allowing us to visualize protein–protein interactions in situ, combined with confocal and super-resolution microscopy, we found that α-synuclein and acetylated α-tubulin colocalized and were in close proximity. Next, we employed an α-synuclein overexpressing cellular model and tested the role of α-tubulin acetylation in α-synuclein oligomer formation. We used the α-tubulin deacetylase HDAC6 inhibitor Tubacin to modulate α-tubulin acetylation, and we evaluated the presence of α-synuclein oligomers by PLA. We found that the increase in acetylated α-tubulin significantly induced α-synuclein oligomerization. In conclusion, we unraveled the link between acetylated α-tubulin and α-synuclein and demonstrated that α-tubulin acetylation could trigger the early step of α-synuclein aggregation. These data suggest that the proper regulation of α-tubulin acetylation might be considered a therapeutic strategy to take on PD

    Methylphenidate Analogues as a New Class of Potential Disease-Modifying Agents for Parkinson’s Disease: Evidence from Cell Models and Alpha-Synuclein Transgenic Mice

    Get PDF
    Parkinson’s disease (PD) is characterized by dopaminergic nigrostriatal neurons degeneration and Lewy body pathology, mainly composed of α-synuclein (αSyn) fibrillary aggregates. We recently described that the neuronal phosphoprotein Synapsin III (Syn III) participates in αSyn pathology in PD brains and is a permissive factor for αSyn aggregation. Moreover, we reported that the gene silencing of Syn III in a human αSyn transgenic (tg) mouse model of PD at a pathological stage, manifesting marked insoluble αSyn deposits and dopaminergic striatal synaptic dysfunction, could reduce αSyn aggregates, restore synaptic functions and motor activities and exert neuroprotective effects. Interestingly, we also described that the monoamine reuptake inhibitor methylphenidate (MPH) can recover the motor activity of human αSyn tg mice through a dopamine (DA) transporter-independent mechanism, which relies on the re-establishment of the functional interaction between Syn III and α-helical αSyn. These findings support that the pathological αSyn/Syn III interaction may constitute a therapeutic target for PD. Here, we studied MPH and some of its analogues as modulators of the pathological αSyn/Syn III interaction. We identified 4-methyl derivative I-threo as a lead candidate modulating αSyn/Syn III interaction and having the ability to reduce αSyn aggregation in vitro and to restore the motility of αSyn tg mice in vivo more efficiently than MPH. Our results support that MPH derivatives may represent a novel class of αSyn clearing agents for PD therapy

    Synapsin III Regulates Dopaminergic Neuron Development in Vertebrates

    Get PDF
    Attention deficit and hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by alterations in the mesocorticolimbic and nigrostriatal dopaminergic pathways. Polymorphisms in the Synapsin III (Syn III) gene can associate with ADHD onset and even affect the therapeutic response to the gold standard ADHD medication, methylphenidate (MPH), a monoamine transporter inhibitor whose efficacy appears related with the stimulation of brain-derived neurotrophic factor (BDNF). Interestingly, we previously showed that MPH can bind Syn III, which can regulate neuronal development. These observations suggest that Syn III polymorphism may impinge on ADHD onset and response to therapy by affecting BDNF-dependent dopaminergic neuron development. Here, by studying zebrafish embryos exposed to Syn III gene knock-down (KD), Syn III knock-out (ko) mice and human induced pluripotent stem cells (iPSCs)-derived neurons subjected to Syn III RNA interference, we found that Syn III governs the earliest stages of dopaminergic neurons development and that this function is conserved in vertebrates. We also observed that in mammals Syn III exerts this function acting upstream of brain-derived neurotrophic factor (BDNF)- and cAMP-dependent protein kinase 5 (Cdk5)-stimulated dendrite development. Collectively, these findings own significant implications for deciphering the biological basis of ADHD

    Alpha-synuclein/synapsin III pathological interplay boosts the motor response to methylphenidate

    Get PDF
    16siLoss of dopaminergic nigrostriatal neurons and fibrillary α-synuclein (α-syn) aggregation in Lewy bodies (LB) characterize Parkinson's disease (PD). We recently found that Synapsin III (Syn III), a phosphoprotein regulating dopamine (DA) release with α-syn, is another key component of LB fibrils in the brain of PD patients and acts as a crucial mediator of α-syn aggregation and toxicity. Methylphenidate (MPH), a monoamine reuptake inhibitor (MRI) efficiently counteracting freezing of gait in advanced PD patients, can bind α-syn and controls α-syn-mediated DA overflow and presynaptic compartmentalization. Interestingly, MPH results also efficient for the treatment of attention deficits and hyperactivity disorder (ADHD), a neurodevelopmental psychiatric syndrome associated with Syn III and α-syn polymorphisms and constituting a risk factor for the development of LB disorders. Here, we studied α-syn/Syn III co-deposition and longitudinal changes of α-syn, Syn III and DA transporter (DAT) striatal levels in nigrostriatal neurons of a PD model, the human C-terminally truncated (1−120) α-syn transgenic (SYN120 tg) mouse, in comparison with C57BL/6J wild type (wt) and C57BL/6JOlaHsd α-syn null littermates. Then, we analyzed the locomotor response of these animals to an acute administration of MPH (d-threo) and other MRIs: cocaine, that we previously found to stimulate Syn III-reliant DA release in the absence of α-syn, or the selective DAT blocker GBR-12935, along aging. Finally, we assessed whether these drugs modulate α-syn/Syn III interaction by fluorescence resonance energy transfer (FRET) and performed in silico studies engendering a heuristic model of the α-syn conformations stabilized upon MPH binding. We found that only MPH was able to over-stimulate a Syn III-dependent/DAT-independent locomotor activity in the aged SYN120 tg mice showing α-syn/Syn III co-aggregates. MPH enhanced full length (fl) α-syn/Syn III and even more (1–120) α-syn/Syn III interaction in cells exhibiting α-syn/Syn III inclusions. Moreover, in silico studies confirmed that MPH may reduce α-syn fibrillation by stabilizing a protein conformation with increased lipid binding predisposition. Our observations indicate that the motor-stimulating effect of MPH can be positively fostered in the presence of α-syn/Syn III co-aggregation. This evidence holds significant implications for PD and ADHD therapeutic management.openopenFaustini G.; Longhena F.; Bruno A.; Bono F.; Grigoletto J.; La Via L.; Barbon A.; Casiraghi A.; Straniero V.; Valoti E.; Costantino G.; Benfenati F.; Missale C.; Pizzi M.; Spillantini M.G.; Bellucci A.Faustini, G.; Longhena, F.; Bruno, A.; Bono, F.; Grigoletto, J.; La Via, L.; Barbon, A.; Casiraghi, A.; Straniero, V.; Valoti, E.; Costantino, G.; Benfenati, F.; Missale, C.; Pizzi, M.; Spillantini, M. G.; Bellucci, A

    Alpha-synuclein/synapsin III pathological interplay boosts the motor response to methylphenidate

    Get PDF
    : Loss of dopaminergic nigrostriatal neurons and fibrillary α-synuclein (α-syn) aggregation in Lewy bodies (LB) characterize Parkinson's disease (PD). We recently found that Synapsin III (Syn III), a phosphoprotein regulating dopamine (DA) release with α-syn, is another key component of LB fibrils in the brain of PD patients and acts as a crucial mediator of α-syn aggregation and toxicity. Methylphenidate (MPH), a monoamine reuptake inhibitor (MRI) efficiently counteracting freezing of gait in advanced PD patients, can bind α-syn and controls α-syn-mediated DA overflow and presynaptic compartmentalization. Interestingly, MPH results also efficient for the treatment of attention deficits and hyperactivity disorder (ADHD), a neurodevelopmental psychiatric syndrome associated with Syn III and α-syn polymorphisms and constituting a risk factor for the development of LB disorders. Here, we studied α-syn/Syn III co-deposition and longitudinal changes of α-syn, Syn III and DA transporter (DAT) striatal levels in nigrostriatal neurons of a PD model, the human C-terminally truncated (1-120) α-syn transgenic (SYN120 tg) mouse, in comparison with C57BL/6J wild type (wt) and C57BL/6JOlaHsd α-syn null littermates. Then, we analyzed the locomotor response of these animals to an acute administration of MPH (d-threo) and other MRIs: cocaine, that we previously found to stimulate Syn III-reliant DA release in the absence of α-syn, or the selective DAT blocker GBR-12935, along aging. Finally, we assessed whether these drugs modulate α-syn/Syn III interaction by fluorescence resonance energy transfer (FRET) and performed in silico studies engendering a heuristic model of the α-syn conformations stabilized upon MPH binding. We found that only MPH was able to over-stimulate a Syn III-dependent/DAT-independent locomotor activity in the aged SYN120 tg mice showing α-syn/Syn III co-aggregates. MPH enhanced full length (fl) α-syn/Syn III and even more (1-120) α-syn/Syn III interaction in cells exhibiting α-syn/Syn III inclusions. Moreover, in silico studies confirmed that MPH may reduce α-syn fibrillation by stabilizing a protein conformation with increased lipid binding predisposition. Our observations indicate that the motor-stimulating effect of MPH can be positively fostered in the presence of α-syn/Syn III co-aggregation. This evidence holds significant implications for PD and ADHD therapeutic management

    Kinetics of hepatitis B virus load during haemodialysis sessions and α-interferon: A prospective study

    Get PDF
    Background: It has been reported a slow progression of hepatitis B in patients undergoing maintenance dialysis, and a role of dialysis session per se has been suggested. The aim of the present study is to evaluate the kinetics of the hepatitis B viral load (HBV DNA) in serum during haemodialysis sessions using a highly sensitive technique; the role of interferon-\u3b1 in lowering HBV viral load in such patients was also investigated. Methods: HBV DNA was determined in 24 HBsAg positive patients on maintenance hemodialysis immediately before and after a 4-hour hemodialysis session, the same measurements were repeated 48 and 72 hours later. HBV DNA quantitation was performed by a novel RealTime PCR assay. Serum IFN-\u3b1 levels were tested in parallel in a subset of HD sessions (n=40) by ELISA. Results: 20 (83%) HBsAg positive patients had detectable HBV DNA in serum. Positive status for HBV DNA in serum was not predicted by demographic, clinical or biochemical parameters. HBV load decreased in many patients after hemodialysis sessions 5.92 log10IU/mL (95% CI, 5.34 to 6.28 log10IU/mL) vs. 4.79 log10IU/mL (95% CI, 4.23 to 6.15 log10IU/mL) (P=0.02). A significant relationship between mean HBV DNA levels before dialysis and percentage reduction of HBV DNA during HD sessions occurred [F-test=5.41, rho (least squares)=0.307]. Increase of serum IFN-\u3b1 levels was found in a minority (3/40=7%) of HD sessions. Conclusions: Hemodialysis procedure gives reduction of HBV load in HBsAg chronic carriers; no relationship with IFN-\u3b1 activity during HD sessions was found. The kinetics of HBV viremia in HD procedures could explain the low viral load which is typically observed in these patients. Further studies to identify the mechanisms responsible for reduction of HBV viremia during HD procedures are under way
    • 

    corecore