27 research outputs found

    Towards screening Barrett’s Oesophagus: current guidelines, imaging modalities and future developments

    Get PDF
    Barrett’s oesophagus is the only known precursor to oesophageal adenocarcinoma (OAC). Although guidelines on the screening and surveillance exist in Barrett’s oesophagus, the current strategies are inadequate. Oesophagogastroduodenoscopy (OGD) is the gold standard method in screening for Barrett’s oesophagus. This invasive method is expensive with associated risks negating its use as a current screening tool for Barrett’s oesophagus. This review explores current definitions, epidemiology, biomarkers, surveillance, and screening in Barrett’s oesophagus. Imaging modalities applicable to this condition are discussed, in addition to future developments. There is an urgent need for an alternative non-invasive method of screening and/or surveillance which could be highly beneficial towards reducing waiting times, alleviating patient fears and reducing future costs in current healthcare services. Vibrational spectroscopy has been shown to be promising in categorising Barrett’s oesophagus through to high-grade dysplasia (HGD) and OAC. These techniques need further validation through multicentre trials

    Advanced endoscopic imaging: European Society of Gastrointestinal Endoscopy (ESGE) Technology Review.

    No full text
    Background and aim This technical review is an official statement of the European Society of Gastrointestinal Endoscopy (ESGE). It addresses the utilization of advanced endoscopic imaging in gastrointestinal (GI) endoscopy. Methods This technical review is based on a systematic literature search to evaluate the evidence supporting the use of advanced endoscopic imaging throughout the GI tract. Technologies considered include narrowed-spectrum endoscopy (narrow band imaging [NBI]; flexible spectral imaging color enhancement [FICE]; i-Scan digital contrast [I-SCAN]), autofluorescence imaging (AFI), and confocal laser endomicroscopy (CLE). The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system was adopted to define the strength of recommendation and the quality of evidence. Main recommendations 1. We suggest advanced endoscopic imaging technologies improve mucosal visualization and enhance fine structural and microvascular detail. Expert endoscopic diagnosis may be improved by advanced imaging, but as yet in community-based practice no technology has been shown consistently to be diagnostically superior to current practice with high definition white light. (Low quality evidence.) 2.We recommend the use of validated classification systems to support the use of optical diagnosis with advanced endoscopic imaging in the upper and lower GI tracts (strong recommendation, moderate quality evidence). 3.We suggest that training improves performance in the use of advanced endoscopic imaging techniques and that it is a prerequisite for use in clinical practice. A learning curve exists and training alone does not guarantee sustained high performances in clinical practice. (Weak recommendation, low quality evidence.) Conclusion Advanced endoscopic imaging can improve mucosal visualization and endoscopic diagnosis; however it requires training and the use of validated classification systems.</p

    Advanced endoscopic imaging: European Society of Gastrointestinal Endoscopy (ESGE) Technology Review.

    No full text
    Background and aim This technical review is an official statement of the European Society of Gastrointestinal Endoscopy (ESGE). It addresses the utilization of advanced endoscopic imaging in gastrointestinal (GI) endoscopy. Methods This technical review is based on a systematic literature search to evaluate the evidence supporting the use of advanced endoscopic imaging throughout the GI tract. Technologies considered include narrowed-spectrum endoscopy (narrow band imaging [NBI]; flexible spectral imaging color enhancement [FICE]; i-Scan digital contrast [I-SCAN]), autofluorescence imaging (AFI), and confocal laser endomicroscopy (CLE). The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system was adopted to define the strength of recommendation and the quality of evidence. Main recommendations 1. We suggest advanced endoscopic imaging technologies improve mucosal visualization and enhance fine structural and microvascular detail. Expert endoscopic diagnosis may be improved by advanced imaging, but as yet in community-based practice no technology has been shown consistently to be diagnostically superior to current practice with high definition white light. (Low quality evidence.) 2.We recommend the use of validated classification systems to support the use of optical diagnosis with advanced endoscopic imaging in the upper and lower GI tracts (strong recommendation, moderate quality evidence). 3.We suggest that training improves performance in the use of advanced endoscopic imaging techniques and that it is a prerequisite for use in clinical practice. A learning curve exists and training alone does not guarantee sustained high performances in clinical practice. (Weak recommendation, low quality evidence.) Conclusion Advanced endoscopic imaging can improve mucosal visualization and endoscopic diagnosis; however it requires training and the use of validated classification systems.</p

    Advanced imaging for detection and differentiation of colorectal neoplasia: European Society of Gastrointestinal Endoscopy (ESGE) Guideline – Update 2019

    No full text
    1:  ESGE suggests that high definition endoscopy, and dye or virtual chromoendoscopy, as well as add-on devices, can be used in average risk patients to increase the endoscopist's adenoma detection rate. However, their routine use must be balanced against costs and practical considerations.Weak recommendation, high quality evidence. 2:  ESGE recommends the routine use of high definition systems in individuals with Lynch syndrome.Strong recommendation, high quality evidence. 3:  ESGE recommends the routine use, with targeted biopsies, of dye-based pancolonic chromoendoscopy or virtual chromoendoscopy for neoplasia surveillance in patients with long-standing colitis.Strong recommendation, moderate quality evidence. 4:  ESGE suggests that virtual chromoendoscopy and dye-based chromoendoscopy can be used, under strictly controlled conditions, for real-time optical diagnosis of diminutive (≤ 5 mm) colorectal polyps and can replace histopathological diagnosis. The optical diagnosis has to be reported using validated scales, must be adequately photodocumented, and can be performed only by experienced endoscopists who are adequately trained, as defined in the ESGE curriculum, and audited.Weak recommendation, high quality evidence. 5:  ESGE recommends the use of high definition white-light endoscopy in combination with (virtual) chromoendoscopy to predict the presence and depth of any submucosal invasion in nonpedunculated colorectal polyps prior to any treatment. Strong recommendation, moderate quality evidence. 6:  ESGE recommends the use of virtual or dye-based chromoendoscopy in addition to white-light endoscopy for the detection of residual neoplasia at a piecemeal polypectomy scar site. Strong recommendation, moderate quality evidence. 7:  ESGE suggests the possible incorporation of computer-aided diagnosis (detection and characterization of lesions) to colonoscopy, if acceptable and reproducible accuracy for colorectal neoplasia is demonstrated in high quality multicenter in vivo clinical studies. Possible significant risks with implementation, specifically endoscopist deskilling and over-reliance on artificial intelligence, unrepresentative training datasets, and hacking, need to be considered. Weak recommendation, low quality evidence

    Advanced imaging for detection and differentiation of colorectal neoplasia: European Society of Gastrointestinal Endoscopy (ESGE) Guideline – Update 2019

    No full text
    1:  ESGE suggests that high definition endoscopy, and dye or virtual chromoendoscopy, as well as add-on devices, can be used in average risk patients to increase the endoscopist's adenoma detection rate. However, their routine use must be balanced against costs and practical considerations.Weak recommendation, high quality evidence. 2:  ESGE recommends the routine use of high definition systems in individuals with Lynch syndrome.Strong recommendation, high quality evidence. 3:  ESGE recommends the routine use, with targeted biopsies, of dye-based pancolonic chromoendoscopy or virtual chromoendoscopy for neoplasia surveillance in patients with long-standing colitis.Strong recommendation, moderate quality evidence. 4:  ESGE suggests that virtual chromoendoscopy and dye-based chromoendoscopy can be used, under strictly controlled conditions, for real-time optical diagnosis of diminutive (≤ 5 mm) colorectal polyps and can replace histopathological diagnosis. The optical diagnosis has to be reported using validated scales, must be adequately photodocumented, and can be performed only by experienced endoscopists who are adequately trained, as defined in the ESGE curriculum, and audited.Weak recommendation, high quality evidence. 5:  ESGE recommends the use of high definition white-light endoscopy in combination with (virtual) chromoendoscopy to predict the presence and depth of any submucosal invasion in nonpedunculated colorectal polyps prior to any treatment. Strong recommendation, moderate quality evidence. 6:  ESGE recommends the use of virtual or dye-based chromoendoscopy in addition to white-light endoscopy for the detection of residual neoplasia at a piecemeal polypectomy scar site. Strong recommendation, moderate quality evidence. 7:  ESGE suggests the possible incorporation of computer-aided diagnosis (detection and characterization of lesions) to colonoscopy, if acceptable and reproducible accuracy for colorectal neoplasia is demonstrated in high quality multicenter in vivo clinical studies. Possible significant risks with implementation, specifically endoscopist deskilling and over-reliance on artificial intelligence, unrepresentative training datasets, and hacking, need to be considered. Weak recommendation, low quality evidence

    Revising the European Society of Gastrointestinal Endoscopy (ESGE) research priorities: A research progress update

    No full text
    Background One of the aims of the European Society of Gastrointestinal Endoscopy (ESGE) is to encourage high quality endoscopic research at a European level. In 2016, the ESGE research committee published a set of research priorities. As endoscopic research is flourishing, we aimed to review the literature and determine whether endoscopic research over the last 4 years had managed to address any of our previously published priorities. Methods As the previously published priorities were grouped under seven different domains, a working party with at least two European experts was created for each domain to review all the priorities under that domain. A structured review form was developed to standardize the review process. The group conducted an extensive literature search relevant to each of the priorities and then graded the priorities into three categories: (1) no longer a priority (well-designed trial, incorporated in national/international guidelines or adopted in routine clinical practice); (2) remains a priority (i. e. the above criterion was not met); (3) redefine the existing priority (i. e. the priority was too vague with the research question not clearly defined). Results The previous ESGE research priorities document published in 2016 had 26 research priorities under seven domains. Our review of these priorities has resulted in seven priorities being removed from the list, one priority being partially removed, another seven being redefined to make them more precise, with eleven priorities remaining unchanged. This is a reflection of a rapid surge in endoscopic research, resulting in 27 % of research questions having already been answered and another 27 % requiring redefinition. Conclusions Our extensive review process has led to the removal of seven research priorities from the previous (2016) list, leaving 19 research priorities that have been redefined to make them more precise and relevant for researchers and funding bodies to target
    corecore