122 research outputs found

    Ramp facies in an intracratonic basin: A case study from the Upper Devonian and Lower Carboniferous in central Hunan, southern China

    Get PDF
    AbstractDetailed studies on Late Devonian to Early Carboniferous carbonate rocks in central Hunan, southern China have led to the recognition of 25 lithofacies which can be grouped into: (1) inner ramp peritidal platform, (2) inner ramp organic bank and mound, (3) mid ramp, (4) outer ramp, and (5) shelf basin facies associations. The peritidal platform facies association dominates the Zimenqiao Formation (Namurian A or late Datangian) and is characterized by gypsum and dolostone-containing sequences, indicating a peritidal platform environment. The other four facies associations dominate the Menggongao Formation (late Famennian), Liujiatang Formation (Tournaisian or Yangruanian), Shidengzi Formations (early Visean or early Datangian). Five upward-shallowing cycles were distinguished in these three Formations. The predominant facies associations developed in each Formation demonstrate an overall transgression–regression cycle in the Late Devonian to Early Carboniferous in central Hunan. The overall transgressive sequence was preserved in the Shaodong, Menggongao, and Liujiatang Formations, and the overall regressive sequence was preserved in the Liujiatang, Shidengzi, Ceshui and Zimenqiao Formations

    Diachronous end-Permian terrestrial ecosystem collapse with its origin in wildfires

    Get PDF
    The Permian-Triassic Mass Extinction (PTME) is the greatest biodiversity crisis in Earth history and while the marine crisis is increasingly well constrained, the timing and cause(s) of terrestrial losses remain poorly understood. There have been suggestions that the End-Permian Terrestrial Collapse (EPTC) pre-dated, was synchronous with or post-dated the marine crisis, or even occurred asynchronously in different regions. We address these conflicting interpretations through a detailed geochemical study of a terrestrial sequence in the Liujiang Coalfield on the North China Plate (NCP) in which we apply zircon U-Pb dating of tuffaceous claystone, kerogen identification, and analysis of organic carbon isotopic composition (δ13Corg), total organic carbon (TOC), continental weathering (via the chemical index of alteration; CIA) and Ni concentrations. Our study constrains the Permian-Triassic boundary (PTB) near the base of bed 20 in our sequence at approximately 251.9 ± 1.1 Ma, immediately above a Ni anomaly also known from other terrestrial sequences and the marine PTME. Organic carbon isotope chemostratigraphy together with evidence for algal blooms and the presence of mudstone clasts suggests that the onset of the EPTC in the NCP was synchronous with the crisis in low latitudes (e.g., South China), but was about 310 kyr later than the EPTC in higher southerly latitudes (e.g., Australia). The EPTC predates the marine PTME. Kerogen macerals suggest that a phase of increased wildfire was sustained from the onset of the EPTC in the NCP until the marine PTME interval, implicating wildfire as a major driver of the EPTC (at least in low latitudes) that, in turn, had devastating consequences for the marine realm

    The impact of frequent wildfires during the Permian-Triassic transition: Floral change and terrestrial crisis in southwestern China

    Get PDF
    Wildfires are considered to have played an important role in the land plants crisis during the Permian–Triassic (P–T) transition. However, the nature and impact of wildfires in the P–T terrestrial crisis remains unclear. Organic petrology data from a terrestrial sequence from southwestern China show that the inertinite content ranges from 21.3% to 80.9% (mean 44.5%), suggesting that wildfires were a frequent phenomenon in low-latitude tropical rainforests during the P–T transition. Abundant inertinite and Hg/TOC peaks in earliest Triassic strata support the co-existence of wildfires and volcanism at that time. Volcanic emissions were potentially lethal for plants and adjacent arc volcanism represents a possible source of ignition. Inertinite reflectance values are used to estimate wildfire combustion temperatures, which themselves are a function of wildfire type. Inertinite with reflectances higher than 4.5% have concentrations between 47% and 65% in the P–T transitional strata. Crown fires with high combustion temperatures were prevalent in wetland settings in the latest Permian. However, surface fires with lower combustion temperatures became dominant during the major terrestrial extinction phase as a result of the sparse, scrubby vegetation that dominated at that time. The subsequent spread of gymnosperms in the earliest Triassic resulted in the re-establishment of high-temperature crown fires. Wildfires associated with the onset of volcanism in the late Permian likely contributed to ecological disturbance in terrestrial settings, which occurred notably earlier than that seen in marine environments. Thus, enhanced wildfire activity destabilised wetlands and increased ecological stress in the late Permian. Wildfire activity on land potentially had devastating consequences for late Permian marine environments via a complex cascade of terrestrial denudation, runoff, and nutrient flux

    An astronomical timescale for the Permian-Triassic mass extinction reveals a two-step, million-year-long terrestrial crisis in South China

    Get PDF
    The Permian-Triassic Mass Extinction (PTME) is the greatest biotic crisis of the Phanerozoic. In terrestrial settings, the PTME appears to have been diachronous and it has been suggested that losses initiated before the marine crisis. We examine organic carbon-isotope (δ13Corg) and geochemical proxies for environmental change in a palaeotropical wetland succession from southwest China. A newly constructed astronomical timescale provides a temporal framework for constraining the timing of the terrestrial PTME. Two major, negative carbon isotope excursions (CIEs) of 5.3‰ and 3.9‰ are observed between the top of the (Permian) Xuanwei Formation and the middle of the (Permian-Triassic) Kayitou Formation respectively. Our cyclostratigraphic model suggests that carbon cycle destabilization lasted ~0.6 ± 0.1 Myr. We calculate total erosion rates for basaltic landscapes as a proxy for volumes of bare soil resulting from deforestation. Two phases of accelerated erosion saw denudation rates rise over a ~1 Myr period from ~150 t/km2/yr in the upper Xuanwei Formation (Permian) to >2000 t/km2/yr at the base of the Dongchuan Formation (Triassic). Calibrating the collapse of terrestrial ecosystems indicates that although the equatorial terrestrial PTME initiated before the marine crisis, it was a protracted process with the final coup-de-grâce not until ~ 700ky later. This has a bearing on extinction scenarios in which the terrestrial PTME is a causal factor in marine losses via enhanced nutrient runoff, because the final devastation on land post-dates the much more abrupt marine PTME

    Electrochemically Fabricated Surface-Mesostructured CuNi Bimetallic Catalysts for Hydrogen Production in Alkaline Media

    Get PDF
    Ni-based bimetallic films with 20 at.% and 45 at.% Cu and mesostructured surfaces were prepared by electrodeposition from an aqueous solution containing micelles of P123 triblock copolymer serving as a structure-directing agent. The pH value of the electrolytic solution had a key effect on both the resulting Cu/Ni ratio and the surface topology. The catalytic activity of the CuNi films toward hydrogen evolution reaction was investigated by cyclic voltammetry (CV) in 1 M KOH electrolyte at room temperature. The CuNi film showed the highest activity (even higher than that of a non-mesostructured pure Ni film), which was attributed to the Ni content at the utmost surface, as demonstrated by CV studies, as well as the presence of a highly corrugated surface

    Different wildfire types promoted two-step terrestrial plant community change across the Triassic-Jurassic transition

    Get PDF
    Frequent wildfires associated with emplacement of the Central Atlantic Magmatic Province (CAMP) are thought to have been important drivers of two significant changes in terrestrial plant communities and diversity during the Triassic-Jurassic Mass Extinction (TJME, ca. 201.51 Ma). ​However, it remains to be investigated whether these two changes are potentially related to different wildfire types. To better understand this relationship, we used a new method to reanalyze fossil pollen and spores across the Triassic-Jurassic transition in the Jiyuan Basin from the North China Plate. Results show that two peaks in wildfire frequency experienced different types of wildfires, with each linked to significant changes in plant communities and diversity losses. In the first wildfire peak, canopy fires dominated and are accompanied by significant losses of canopy forming plants, while in the second wildfire peak, ground cover fires dominated accompanied by significant losses of ground cover plants. ​Changes in atmospheric humidity conditions were an important control on the two different wildfire peaks. Relatively humid climatic conditions corresponded to the prevalence of canopy fires and hindered the spread and development of ground cover fires in wet surface conditions. Conversely, relatively arid climatic conditions corresponded with the prevalence of ground cover fires in dry surface environments. Our results provide a potential relationship between terrestrial plant communities and wildfire types, which is important to further understanding of terrestrial environmental and floral changes driven by Large Igneous Provinces

    Volcanically-induced floral changes across the Triassic-Jurassic (T-J) transition

    Get PDF
    The End-Triassic Mass Extinction (ETME) saw the catastrophic loss of ca. 50% of marine genera temporally associated with emplacement of the Central Atlantic Magmatic Province (CAMP). However, the effects of the ETME on land is a controversial topic. Evaluation of the disparate cause(s) and effects of the extinction requires additional, detailed terrestrial records of these events. Here, we present a multidisciplinary record of volcanism and environmental change from an expanded Triassic-Jurassic (T-J) transition preserved in lacustrine sediments from the Jiyuan Basin, North China. High-resolution chemostratigraphy, palynological, kerogen, and sedimentological data reveal that terrestrial conditions responded to and were defined by large-scale volcanism. The record of sedimentary mercury reveals two discrete CAMP eruptive phases during the T-J transition. Each of these can be correlated with large, negative C isotope excursions (CIE-I of -4.7 ‰; CIE-II of -2.9 ‰), significantly reduced plant diversity (with ca. 45% and 44% generic losses respectively), enhanced wildfire (marked by increased fusinite or charcoal content), and major climatic shifts towards drier and hotter conditions (indicated by the occurrence of calcareous nodules, increased Classopollis pollen content, and PCA analysis). Our results show that CAMP eruptions may have followed a bimodal eruptive model and demonstrate the powerful ability of large-scale volcanism to alter the global C cycle and profoundly affect the climate, in turn leading to enhanced wildfires and a collapse in land plant diversity during the T-J transition

    Different wildfire types promoted two-step terrestrial plant community change across the Triassic-Jurassic transition

    Get PDF
    Frequent wildfires associated with emplacement of the Central Atlantic Magmatic Province (CAMP) are thought to have been important drivers of two significant changes in terrestrial plant communities and diversity during the Triassic-Jurassic Mass Extinction (TJME, ca. 201.51 Ma). ​However, it remains to be investigated whether these two changes are potentially related to different wildfire types. To better understand this relationship, we used a new method to reanalyze fossil pollen and spores across the Triassic-Jurassic transition in the Jiyuan Basin from the North China Plate. Results show that two peaks in wildfire frequency experienced different types of wildfires, with each linked to significant changes in plant communities and diversity losses. In the first wildfire peak, canopy fires dominated and are accompanied by significant losses of canopy forming plants, while in the second wildfire peak, ground cover fires dominated accompanied by significant losses of ground cover plants. ​Changes in atmospheric humidity conditions were an important control on the two different wildfire peaks. Relatively humid climatic conditions corresponded to the prevalence of canopy fires and hindered the spread and development of ground cover fires in wet surface conditions. Conversely, relatively arid climatic conditions corresponded with the prevalence of ground cover fires in dry surface environments. Our results provide a potential relationship between terrestrial plant communities and wildfire types, which is important to further understanding of terrestrial environmental and floral changes driven by Large Igneous Provinces
    • …
    corecore