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ABSTRACT  20 

The late Permian was the acme of Pangea assembly, with collision and subduction of global plates 21 

accompanied by major changes in atmospheric composition, paleoclimates and paleoenvironments of 22 

the Earth’s surface system. These events are extensively recorded in marine successions from the 23 

Tethys, but much less are known from continental successions that typically lack high-resolution 24 

stratigraphic control. In order to reveal these fluctuations in terrestrial strata and their relationship 25 

with the End-Permian Mass Extinction (EPME), we investigate continental δ13Corg, mercury and 26 

nickel concentrations, wildfire, and climate change proxies from the late Permian Changhsingian 27 

stage to Early Triassic Induan stage in the Yuzhou coalfield in the North China Plate (NCP). Results 28 

show two negative organic carbon isotope excursions (CIE) within the Changhsingian aged 29 

Sunjiagou Formation, the first (CIE-I, 2.2‰) during mid-Changhsingian and a second, larger, 30 

excursion (CIE-II, 2.7‰) near the end of the Changhsingian that coincides with the peaks in the 31 

Chemical Index of Alteration (CIA) value and extinction of plant species. We infer CIE-II to be the 32 

global negative excursion of δ13Corg associated with the EPME. Arid climates prevailed in the study 33 

area from the Changhsingian to the early Induan inferred from the low kaolinite contents and weak 34 

continental weathering, except for two short-duration episodes with higher humidity that correspond 35 

with CIE-I and CIE-II. Extremely high fusinite content (x̄ = 63.1%) and its increasing abundance 36 

through the Changhsingian indicates that frequent wildfires may have been a direct cause for both 37 

the destruction of terrestrial vegetation ecosystems and the rapid decline of terrestrial biodiversity at 38 

the EPME. We consider that terrestrial ecosystems may have played an important role in the 39 

extinction of marine communities at the EPME. This represents the first time the EMPE has been 40 

demonstrated in the NCP based on combined evidence from negative carbon isotope excursion, 41 

concurrent weathering trends, Ni/Al ratio and biotic extinctions, representing an important step in 42 

accurately identifying and correlating the EPME in continental settings from the NCP. 43 

 44 
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 47 

1. Introduction 48 

The End-Permian Mass Extinction (EPME) represents the largest mass extinction event in Earth 49 

history, and resulted in substantial loss of 90% marine and 70% terrestrial species (Erwin, 1994). The 50 

extinction was related to extreme fluctuations in atmospheric composition, paleoclimates and 51 

paleoenvironments on the Earth’s surface system, that included rapid and sustained global warming 52 

(Joachimski et al., 2012; Sun et al., 2012), ocean anoxia (Wignall and Twitchett, 1996) and 53 

widespread wildfires (Shen et al., 2011; Chu et al., 2020) amongst other kill mechanisms (Bond and 54 

Grasby, 2017). Although the underlying triggers and extinction mechanisms for the EPME are 55 

complex and difficult to disentangle from each other (Bond and Grasby, 2017; Wignall et al., 2020), 56 

it is generally considered that the deterioration of global climate and environment is related to 57 

intense volcanic activity from the Siberian Traps during the Permian–Triassic (P–T) transition (Shen 58 

et al., 2011; Burgess and Bowring, 2015; Ernst and Youbi, 2017). 59 

Studies linking the EPME to changes in global climate and environment primarily focus on 60 

marine strata (Wignall and Hallam, 1992; Wignall and Twitchett, 1996; Grasby and Beauchamp, 61 

2009; Shen et al., 2011, 2013; Grasby et al., 2013, 2016; Liao et al., 2016, 2020) due to their often 62 

continuous deposition and well-dated stratigraphic frameworks. By contrast, fewer studies have 63 

focused on contemporaneous continental conditions despite their obvious link to the EPME as a 64 

major source of nutrients flushed into marine settings (Algeo et al., 2013; Wignall et al., 2020). At 65 

the same time ocean hypoxia thought to be triggered by algal and cyanobacterial proliferation in 66 

surface waters is a common phenomenon accompanied by the extinction of marine life (e.g., Xie, 67 

2007). However, the reason for cyanobacterial proliferation is controversial. Some studies have 68 

attributed it to increased terrestrial input of nutrients caused by enhanced continental weathering (e.g., 69 
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Algeo and Twitchett, 2010) with post-EPME oceans having high bioproductivity (e.g., Meyer, 2011; 70 

Shen et al., 2015). In contrast, other studies consider it may result from the transformation of 71 

nitrogen into ammonium in anoxic environments (Sun et al., 2019), with the role of land-sourced 72 

nutrients limited and oceanic primary productivity low (Grasby et al., 2016a, 2019a; Sun et al., 2019). 73 

Therefore, contemporaneous continental strata are important to understand the relationship of climate, 74 

weathering and environmental changes between continents and marine settings.  75 

From the P–T transition interval in the NCP, numerous past studies have focused on stratigraphy, 76 

sedimentology, palaeontology and tectonics (e.g., Wang and Wang, 1986; Hou and Ouyang, 2000; 77 

Chu et al., 2015, 2017, 2019; Zhao et al., 2017), making these continental strata ideal for evaluating 78 

climate and environmental changes during this time period. These have identified major changes in 79 

terrestrial diversity including extinctions in conchostracans and ostracoda (Chu et al., 2015), as well 80 

as a dramatic reduction in plant species diversity near the boundary of the Changshingian aged 81 

Sunjiagou Formation and Induan aged Liujiagou Formation (Chu et al., 2015, 2019). In recent years, 82 

elevated mercury and nickel levels as a signature for volcanism have been documented in marine and 83 

terrestrial sediments associated with the EPME (Sanei et al., 2012; Grasby et al., 2013, 2015, 2016b; 84 

2019b; Burgess and Bowring, 2015; Rampino et al., 2017; Fielding et al., 2019; Shen J et al., 2019; 85 

Chu et al., 2020), but elevated mercury and nickel levels have not previously been recorded in the 86 

continental environments of the NCP. 87 

Using the ZK21-1 borehole core in the Yuzhou Coalfield of the southern NCP, we consider 88 

fluctuations in 13Corg, mercury and nickel concentrations, clay mineral components, Mineralogical 89 

Index of Alteration (MIA) for sandstones, the Chemical Index of Alteration (CIA) for mudstones, 90 

and kerogen macerals to evaluate the changes of global carbon cycle, volcanism, climate, continental 91 

weathering trend and wildfires in relation to the EPME. This represents an important step in the 92 

application of these proxies to evaluate the Permian-Triassic boundary interval in the continental 93 

successions of the NCP. 94 
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2. Geological background 95 

During early Lopingian period, the NCP, surrounded by the Inner Mongolia uplift (IMU) to the 96 

north and the North Qinling Belt (NQB, or Funiu paleo-land) to the south, was located in the 97 

northeastern margin of the Paleo-Tethys Ocean (Fig. 1a), with a latitude of approximately 20° N 98 

(Ziegler et al., 1997; Shang, 1997; Li, 2006; Muttoni et al., 2009). It was separated from the South 99 

China Plate by the Paleo-Tethys Ocean, and from the Mongolian plate by the paleo-Asian ocean 100 

(Zhao et al., 2017; Fig. 1a, e). During this period, sediments were mainly sourced from the northern 101 

IMU for the ongoing southward subduction of the paleo-Asian Ocean beneath the NCP (Zhang et al., 102 

2014). In the Changhsingian stage, the NQB begin to uplift and became the secondary provenance of 103 

the NCP, but the main provenance for the study area in the Yuzhou coalfield located in the southern 104 

NCP (Shang, 1997). The main part of the NQB is represented by the Qinling Group consisting 105 

predominantly of Precambrian basement units including gneiss and amphibolite (Zhang et al., 1995; 106 

Dong and Santosh, 2016).  107 

The stratigraphic succession, rock types and fossil plant assemblages from the late Permian to 108 

Early Triassic in the study area are shown in Figure 2. The strata studied in this paper conformably 109 

overlie the Upper Shihezi Formation and comprise the Sunjiagou Formation and the lower part of the 110 

overlying Liujiagou Formation. The Sunjiagou Formation has been divided into three members 111 

according to their lithological association (Yang and Lei, 1987; Wang, 1997). The lower and middle 112 

members of the Sunjiagou Formation are composed of medium-coarse, feldspathic quartz sandstone 113 

and thin layers of siltstone and mudstone, while the upper part of the Sunjiagou Formation is 114 

composed only of thin layers of mudstone and siltstone, all deposited in a shore-shallow lake 115 

environment (Guo et al., 1991). Based on sporo-pollen and plant fossil assemblages, previous studies 116 

have assigned the Sunjiagou Formation to the Changhsingian stage, and the conformably overlying 117 

Liujiagou Formation to the early Early Triassic Induan stage (Wang and Wang, 1986; Hou and 118 

Ouyang, 2000; Wang and Chen, 2001; Chu et al., 2015). The Liujiagou Formation mainly 119 
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encompasses thickly layered medium to coarse sandstone, fine-grained sandstones and siltstones 120 

with few trace fossils, mainly deposited in a braided river sedimentary system. The base of its 121 

lowermost Jindoushan Sandstone member has been regarded as a regional marker for the 122 

Permian-Triassic boundary (Guo et al., 1991; Fig. 2d). Within the Yuzhou Coalfield, we studied 123 

borehole ZK21-1 that lies within the Putaosi exploration area that is a monoclinal structure inclined 124 

toward the southwest (Fig. 1b, c, d).  125 

 126 

3. Materials and methods 127 

From the ZK21-1 borehole in the Yuzhou coalfield, fresh sandstone (27 samples) and mudstone 128 

(22 samples), were collected from the Sunjiagou Formation to the lower part of the Liujiagou 129 

Formation. Sampling locations are shown in Figure 3. Every mudstone sample was first broken down 130 

to less than 1 mm and then divided into two parts. One part was prepared for kerogen enrichment and 131 

identification according to the China national standard (SY/T5125-2014), with no less than 300 132 

effective points per sample analyzed. The remaining part of each mudstone sample was further 133 

crushed below 200 mesh and divided into six subparts for (1) 13Corg analysis, (2) clay mineral 134 

analysis, (3) Total organic content (TOC) analysis, (4) major elements analysis, (5) trace elements 135 

analysis, and (6) mercury concentration analysis. Clay mineral and mercury concentration were 136 

measured at the State Key Laboratory Coal Resources and Safe Mining (Beijing), and the other 137 

analyses in Beijing Research Institute of Uranium Geology. 138 

Organic carbon isotope analysis was performed using a stable isotope mass spectrometer 139 

(MAT253), and δ13Corg values are expressed in per mil (‰) with respect to the Vienna Pee Dee 140 

Belemnite (VPDB) standard, with the absolute analysis error of ±0.1‰. Clay mineral was analyzed 141 

using an X-ray diffractometer (D/max 2500 PC), and the data were interpreted using Clayquan 2016 142 

software with the relative analysis error of ±5%. Samples for TOC were first treated with phosphoric 143 

acid to remove inorganic carbon, and then the TOC values were measured using a carbon-sulfur 144 
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analyzer (CS580-A) with the lower detection limits of 100 g/g and the absolute analysis error of 145 

±0.2%. Major elements analysis was undertaken with an X-ray fluorescence spectrometer (PW2404) 146 

with the relative analysis error of ±5%. Trace elements analysis was undertaken using an inductively 147 

coupled plasma mass spectrometer (Finnigan MAT) with the relative analysis error better than ±5%. 148 

Mercury concentration was undertaken using a mercury analyzer (Lumex RA-915+) with lower 149 

detection limits of 2ng/g and the relative analysis error of ±5%. More details of the analytical method 150 

are described by Ma et al. (2015), Liao et al. (2016), Wu et al. (2017), Hu et al. (2020) and Chu et al. 151 

(2020). Sandstone samples were cut into slices and identified by the point-counting method under a 152 

microscope with more than 300 effective points of each sample. The classification of sandstone 153 

components is in accordance with that of Dickinson (1985). 154 

In this study, mercury and nickel concentrations have been used to indicate the presence of 155 

volcanic activity due to their relationship with volcanic eruptions and magmatic intrusions (Sanei et 156 

al., 2012; Burgess and Bowring, 2015; Rampino et al., 2017; Grasby et al., 2019b).The indexes of 157 

MIA of sandstone and CIA of mudstone were used to restore the weathering trends of the parent rock 158 

in provenance, their concepts and implications are outlined by Nesbitt and Young (1984), Fedo et al. 159 

(1995), and Roy and Roser (2013). Paleoclimate inferences have been recovered by the kaolinite 160 

content of mudstone, with MIA and CIA values used for reference. As the abundance of kaolinite in 161 

modern sediments is dependent on the intensity of chemical weathering controlled by climate 162 

(Chamley, 1989), and because of its strong diagenesis resistance, changes in its content are 163 

considered to be a reliable climatic proxy (Thiry, 2000). Fusinite (Charcoal) content has been used to 164 

indicate paleowildfire (e.g., Scott, 2000; Glasspool and Scott, 2010). 165 

 166 

4. Results 167 

4.1. Total organic content (TOC) and distribution pattern of 13Corg  168 

Results for TOC and δ13Corg are shown in Table 1 and Figure 3a, b. TOC values vary from 0.05–169 
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0.12 % (x̄ = 0.09%). These values are low 0.2% detection limit (see Grasby et al., 2019b) and will 170 

not be used in the following discussion.  171 

δ13Corg values vary from -26.5–23.0 ‰ (x̄ = -24.7‰), and show a vertical variation trend from 172 

fast negative excursion with an offset of 2.2‰ (CIE-I) in the middle of the Sunjiagou Formation, 173 

followed by slow positive excursion with an offset of 1.4‰. Near the top of the Sunjiagou Formation, 174 

a second, larger excursion occurs with an offset of 2.7‰ (CIE-II). After CIE-II, δ13Corg values 175 

increase at the base of the Liujiagou Formation (Fig. 3b). Vertically, CIE-I and CIE-II corresponds 176 

approximately with the position of the two zones of high TOC values (Fig. 3a). High TOC values 177 

occur elsewhere in the succession without corresponding δ13Corg excursions (Fig. 3a, b). 178 

 179 

4.2. Mercury and Nickel concentration 180 

Results for mercury and nickel concentrations are shown in Table 1. Hg concentrations vary 181 

from 2.21–27.04 ng/g (x̄ = 22.5 ng/g) (Table. 1) with an obvious peak in Hg concentration 182 

corresponding to the position of CIE-II. Although the peak value in Hg concentration is 3 times the 183 

average concentration, the value of Hg concentrations are within the average values of marine shale 184 

in published papers (c.f. Grasby et al., 2019b). The nature of the Hg peak is not clear and we do not 185 

regard it as definitive evidence for volcanism in the study area. 186 

Nickel concentrations vary from 21.5–69.7 g/g (x̄ = 34.45 g/g) with an obvious peak in 187 

concentration corresponding to the position of CIE-II. The value of the peak (69.7 g/g) is within the 188 

range recorded during the P-T transition (12-800g/g; see Ramponi et al., 2017 and references 189 

therein).  190 

Although Ni concentration may be related to volcanism, some researchers consider it to be 191 

influenced by aluminium content (e.g., Fielding et al., 2019). We corrected Ni concentrations by 192 

aluminium concentration and the values of the Ni/Al ratio (Fig. 3e) vary from 2.36–6.72 ×10-4 (x̄ = 193 

3.87×10-4). Two peaks in Ni/Al ratio occur of which the lower one is coincident with the position of 194 
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CIE-II (Fig. 3b), indicating that the peak in Ni concentration and Ni/Al ratio corresponding to CIE-II 195 

is reasonable to be inferred as evidence of volcanism affecting the study area.  196 

 197 

4.3. Kerogen macerals 198 

Identification results of kerogen macerals are shown in Table 1 and Figure 3f. Inertinite content 199 

varies from 49.3–70.1 % (x̄ = 63.1%) and entirely comprises fusinite (charcoal) which is opaque, 200 

pure black, does not fluoresce under fluorescence illumination (Fig. 4a-c) and is usually long and 201 

thin or fragmental shaped with sharp edges. Vertically through the succession, fusinite concentration 202 

increases slowly at first, reaches a peak value of 70.1% near the top of the Sunjiagou Formation, and 203 

then decreases slowly after entering the Liujiagou Formation. The vitrinite group, with contents 204 

varying from 24.4–45.0 % (x̄ = 29.0%) mainly comprises normal vitrinite (Fig. 4d, e). Exinite 205 

content varies from 3.6–11.9 % (x̄ = 7.7%) of which suberinite is the main component (Fig. 4f, g). 206 

Sapropelinite content is very low with an average value of 0.3% (Fig. 4h-k). 207 

 208 

4.4. MIA, CIA, and Clay mineral component 209 

The values of the Th/U ratio vary from 2.04 – 4.92 (Table 3), indicating that the parent rocks of 210 

the sediments in the study area are not recycled. This is because recycled mudrocks exhibit high 211 

Th/U ratios of around 6 due to oxidation of U4+ to U6+ and its removal as a soluble component (c.f. 212 

Bhatia and Taylor, 1981). This conclusion is consistent with the provenance properties (stable land) 213 

indicated by the Dickson diagram (Fig. 5a) and is in agreement with Shang (1997) and Dong and 214 

Santosh (2016) who determined sediments of the study area mainly originated from the North 215 

Qinling Terrane (NQT) based on paleogeographic restoration and lithofacies analysis.  216 

A reliability test of the CIA values in the study area was undertaken by the A-CN-K diagram 217 

(Nesbitt and Young, 1984) that shows the CIA values deviate from the ideal weathering trend line 218 

(Fig. 5b) and are affected by potassium metasomatism. Subsequently, these CIA values were 219 
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calibrated by the method of Fedo et al. (1995). MIA values vary from 70.9–91.8 (x̄=78.8) (Table 2, 220 

Fig. 3g), most of which are between 70–80 and show a relatively stable vertical distribution through 221 

the succession, except for two intervals with MIA values > 80 near the middle of the Sunjiagou 222 

Formation and at the boundary of the Sunjiagou and Liujiagou formations. The corrected values 223 

(CIAcorr) vary from 78.1–86.5 (x̄=83.7) (Table 3, Fig. 3h) and are similar to the MIA results, 224 

reflecting moderate weathering of source area and showing a similar vertical change pattern. This 225 

shows MIA and CIA are reliable indexes for indicating weathering trends in the study area. The two 226 

periods of enhanced weathering approximately correspond with negative excursions CIE-I and 227 

CIE-II (Fig. 3b, g, h). 228 

The clay mineral components of the mudstone samples are mainly illite-smectite mixed layers, 229 

followed by kaolinite and illite (Table 3, Fig. 3i, 6). The content of illite-smectite mixed layers varies 230 

from 79–96 % (x̄ = 90.5%). Kaolinite content changes from 2–18 % (x̄ = 5.8%) and presents a 231 

vertical trend of first decreasing and then increasing, but with two peaks in kaolinite content (about 232 

10% and 18%, respectively) corresponding roughly with the position of CIE-I and CIE-II. The illite 233 

content is very low with an average of 3.8%. 234 

 235 

5. Discussion 236 

 237 

5.1. Stratigraphic correlation and the position of the EPME  238 

Previous studies of continental weathering in the Yima and Shichuanhe sections in the NCP 239 

during the P-T transition shown that CIA values tends to increase first and then decrease, with the 240 

maximum CIA values occurring at the top of the Sunjiagou Formation and approximately correspond 241 

to the End-Permian Plant Extinction (EPPE) (Cao et al., 2019). This provide a timeline for the 242 

position of the EPPE in the NCP. We follow this conclusion, using the peak in CIA as a marker for 243 

the EPPE and place the EPPE at the horizon coincident with CIE-II in the study area. 244 
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Furthermore, chemostratigraphy can provide evidence for the correlation between the EPPE in 245 

NCP and marine settings. Investigations on δ13C distribution patterns from stratigraphically 246 

well-constrained Lopingian to early Triassic profiles have been undertaken in marine (Meishan, 247 

Niushan) (e.g., Shen et al., 2013; Liao et al., 2016, 2020) and terrestrial (Dalongkou, Lubei, 248 

Guanbachong, Chahe, Longmendong, Bunnerong-1) strata (e.g., Zhang et al., 2016; Shen J et al., 249 

2019; Fielding et al., 2019). These reveal δ13C is relatively stable during the early Changhsingian, 250 

followed by a gradual and slow decrease during the late Changhsingian prior to a globally significant 251 

excursion with an average negative offset of 3–5 ‰ shortly before the P–T boundary (Shen S et al., 252 

2019). The end-Changhsingian negative excursion of δ13C represents a major reorganization of the 253 

global carbon cycle associated with the EPME interval and is a global phenomenon (Shen S et al., 254 

2011, 2013, 2019). 255 

In the study area, the δ13Corg trend is very similar to that in Meishan Changhsingian stratotype 256 

section at Changxing, South China (Nan and Liu, 2004). CIE-I occurs in mudstones on top of the 257 

Pingdingshan Sandstone (Fig. 3), it may be a regional negative excursion as while it is present in the 258 

Meishan section in South China, it is absent in many other sections globally (e.g., Yin et al., 2007). 259 

In our study, no changes in plant species composition occur at this level (Fig. 2h). CIE-II occurs near 260 

the top of the Sunjiagou Formation, and coincident it is a significant floral extinction event just 261 

below the P-T boundary (Fig. 2h) that occurs across the NCP (Wang and Wang, 1986; Chu et al., 262 

2015). Moreover, peaks in nickel concentration and Ni/Al ratio during the P-T transition period also 263 

are within the extinction interval of the EPME (Rampino et al., 2017 and references therein; Fielding 264 

et al., 2019). As a result, we interpret CIE-II as correlating with the end-Changhsingian negative 265 

excursion associated with the EPME in Meishan Changhsingian stratotype section. Our study 266 

support the hypothesis that the extinction is synchronous in both terrestrial and marine successions 267 

(Shen S et al., 2011, 2013, 2019; Zhang et al., 2016) although other recent research shows that the 268 

extinction of terrestrial life earlier than that of marine life (Fielding et al., 2019; Gastaldo et al., 2020; 269 
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Chu et al., 2020). This might suggest that the terrestrial extinction was not synchronous, occurring 270 

earlier at higher latitudes and closer or at the same time as the marine extinction at lower latitudes 271 

(Feng et al., 2020). 272 

 273 

5.2. Paleoclimate changes and continental weathering regimes 274 

In the NCP during the Changhsingian, previous studies considered that arid paleoclimates 275 

prevailed (Yang and Lei, 1987; Cope et al., 2005; Yang and Wang, 2012), related to the northward 276 

drift of the NCP through arid subtropical latitudes and/or rain-shadow effect from topography 277 

resulting from collision with the Mongolia block (Cope et al., 2005). In study area, the wetland 278 

Cathaysian flora was rapidly succeeded by a Zechstein-type drier flora at the end of the 279 

Wuchiapingian (Yang and Wang, 2012; Fig. 2g). In the NCP, the absence of coal deposition, 280 

widespread distribution of red beds in the Sunjiagou and Liujiagou formations, and the occurrence of 281 

calcareous nodules in the upper part of Sunjiagou Formation collectively indicate high evaporation 282 

and an arid paleoclimate (Yang and Lei, 1987; Wang, 1997). 283 

In our study a generally arid paleoclimate is evidenced based on low kaolinite content in 284 

mudstones and the moderate-weak continental weathering of the source area (Fig. 3g, h, i, 7a). 285 

However, this was not continuous with two short duration periods of relative humidity appearing in 286 

the mid-Changhsingian and near the P–T boundary (Fig. 7h). This is more pronounced in the latter 287 

event that coincides with CIE-II where kaolinite content of mudstones reaches 18%, and the values 288 

of MIA and CIA exceed 80 and 85, respectively. This conclusion is supported by records from the 289 

Yima and Shichuanhe sections in the NCP near the P–T boundary (Cao et al., 2019), where peaks in 290 

CIA values roughly correspond to the EPPE. At the same time, similar peaks in CIA values and 291 

Kaolinite content also were recorded in southeast Australia, the reason of which has been attributed 292 

to the intensification of humidity/warmth around the EPME (Fielding et al., 2019). Short-term 293 

climatic humidification and enhanced continental weathering in the P-T transition has also been 294 
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recorded in other areas of the world (e.g., Bachmann and Kozur, 2004; Sheldon, 2005; Retallack, 295 

2005; Song, 2015). 296 

There is no consensus on whether or why the climate became wet near the P–T boundary. Many 297 

previous studies suggested that paleoclimate humification around the Tethys Ocean may be related to 298 

the increased precipitation and surface runoff caused by the intensification of Monsoon activity 299 

(Winguth and Winguth, 2013), or acceleration of the land water cycle caused by the rising global 300 

temperature (Van Soelen et al., 2018). However, some studies suggest that the increase of kaolinite 301 

content and the enhancement of continental weathering from the late Changhsingian to early Induan 302 

are related to the increase of atmospheric pCO2 and acid rain caused by frequent volcanic activity 303 

(Algeo and Twitchett, 2010; Sun et al., 2018; Cao et al., 2019). This is because elevated acidity and 304 

temperature conditions can accelerate rock weathering rates. As such volcanic activity may mislead 305 

the paleoclimate and continental weathering trends based on kaolinite content as well as influencing 306 

MIA and CIA values.  307 

In the study area, the increased kaolinite content and MIA and CIA values after the EPME 308 

occurred in a period of rapidly rising global sea level (Cao et al., 2009; Yin and Song, 2013). This 309 

significantly increased water vapor transportation to land (Winguth and Winguth, 2013), resulting in 310 

continental climatic humidification. This may explain the terrestrial climate wetting after the EPME 311 

but it cannot rule out the possibility that climate humidification and the prevalence of acid rain 312 

occurred simultaneously.  313 

 314 

5.3. Continental Wild-fire linked to EPME and marine extinctions 315 

Fusinite, or charcoal, is fire-derived and evidences wildfires in the rock record (Scott, 2000; 316 

Glasspool and Scott, 2010). In the Yuzhou coalfield, inertinite (fusinite) is the most abundant 317 

kerogen maceral group (x̄ = 63.1%). The high fusinite content and its vertical variation pattern (see 318 

4.3) indicate that the paleo-fires prevailed in the southern NCP during the middle 319 
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Changhsingian-early Induan and reach their peak near the P–T boundary. This increasing frequency 320 

of continental paleo-fires appears to be a global phenomenon, with similar records recorded in other 321 

parts of NCP as well as in South China, Australia, and Canada (e.g., Wang and Chen, 2001; Grasby 322 

et al., 2011; Shen et al., 2011; Chu et al., 2020).  323 

Factors affecting wildfire include availability of combustible fuel, atmospheric oxygen 324 

concentration to enable burning, a suitable climate lacking high moisture, and an ignition mechanism 325 

(Scott, 2000). The Zechstein-type flora present across the NCP during the Changhsingian was 326 

adapted for dry climates and would have been an appropriate source of fuel. Atmospheric oxygen 327 

concentration at the end-Permian has been estimated as 21–27 %, far in excess of the minimum 328 

oxygen requirement of 15% for plant combustion (Glasspool and Scott, 2010). Dry and hot climates 329 

favor the prevalence of wildfires, and water limited conditions persisted during the Changhsingian in 330 

the study area prior to the EMPE (Fig. 7h). However, at the beginning of the EPME interval, the 331 

climate tended to be relatively humid reducing the likelihood of wildfire. Therefore, the prevalence 332 

of wildfire in the late Changhsingian may have been controlled by ignition factors. Under natural 333 

conditions, ignition is caused by lightning, volcanic eruption and less probably meteor impact 334 

(Glasspool et al., 2015). Of these, there is no volcanic activity in proximity to the Yuzhou coalfield 335 

suitable to ignite wildfires, nor is there any evidence for meteor impact as an ignition mechanism at 336 

this time. Lightning would have been the main ignition source of wildfire in the run-up to the EPME, 337 

the occurrence of which was related to the climate and atmospheric pCO2 (Glasspool and Scott, 2010; 338 

Glasspool et al., 2015). 339 

In the NCP, wildfire may be the direct cause for both the destruction of terrestrial ecosystems 340 

and the rapid decline of plant biodiversity at the EPME, also playing an important role in the 341 

extinction of marine organisms (Shen et al., 2011; Zhang et al., 2016). Damage to the land surface 342 

vegetation system by frequent wildfire during the EPME interval would have led to increased soil 343 

erosion as well as exposing bedrock and increasing continental weathering leading to siltation (Shen 344 
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et al., 2011). 345 

 In the study area, many greyish-green and purplish red mudstone clastics occur in the lake 346 

mudstone associated with the CIE-II and persist into the early Triassic in the drill core ZK21-1 (Fig. 347 

8a). This is a common phenomenon in the NCP and similar mudstone clastics also was observed in 348 

the uppermost Sunjiagou Formation in borehole core profile in the Liujiang area in Hebei province 349 

(middle NCP) (Fig. 8b), and the Shuiyuguan section in Shaanxi Province (middle NCP) (Fig. 8c, d). 350 

These mudstone clastics may indicate the increased soil erosion after the collapse of terrestrial 351 

vegetation systems. This increased soil erosion does not have a significant effect on the chemical 352 

weathering, because it promoted erosion and transportation of the surface soil. However, the decline 353 

in CIA values following the EPPE may reflect loss of weathered soils through physical erosion (Cao 354 

et al., 2019). 355 

As a result of wildfire, large amounts of organic matter (including charcoal and un-charred 356 

matter) and nutrients (including phosphorus and potassium) produced by plant combustion and 357 

weathering of parent rock would enter the oceans through surface runoff (Algeo et al., 2013; 358 

Glasspool et al., 2015). These inert organic particles would float in ocean for some time, increasing 359 

oceanic turbidity through siltation, and affect the penetration of light and the photosynthesis of 360 

marine organisms (Glasspool et al., 2015). Large nutrient inputs may be one of the main reasons for 361 

prospering cyanobacteria and algae in oceanic surface waters (Meyer et al., 2011; Shen et al., 2015). 362 

Eutrophication of seawater during the P-T transition was considered as a localized phenomenon 363 

(Algeo et al., 2013) while Sun et al. (2019) considered the transformation of nitrogen to ammonium 364 

the main reason for the cyanobacterial proliferation at this time. In this context, oxygen circulation 365 

between seawater and atmosphere would have been inhibited by floating inert organic particles, 366 

cyanobacteria and algae in surface waters, increasing the consumption of dissolved oxygen by the 367 

decomposition of dead cyanobacteria and algae remains (e.g., Algeo et al., 2013; Glasspool et al., 368 

2015; Sun et al., 2019). This would have further contributed to oceanic anoxia and the extinction of 369 
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aerobic marine organisms.  370 

While siltation may be a causal mechanism for mass extinctions in the marine realm, Wignall et 371 

al. (2020) concluded this was not the case for the EPME in the western Guizhou and eastern Yunnan 372 

region of the South China Plate (SCP). Plant material in that region was trapped in alluvial settings 373 

during base-level rise and did not enter the ocean. However, siltation may have occurred in the 374 

southeastern sea area of the NCP. Here fluvial depositional systems, represented by the Jindoushan 375 

Sandstone developed through nearly the whole NCP during the P-T transition period following rapid uplift 376 

of the IMU to the north (Shang, 1997; Zhang et al., 2014). Large amount of sediment including organic 377 

matter may have entered the ocean from the southeast exit of the basin. Sedimentological evidence for this 378 

likely siltation is not available because sedimentary strata to the west of the Tanlu Fault (Fig. 1b, c) that 379 

would have recorded this were eroded post-deposition. 380 

 381 

6. Conclusions 382 

1) Values of δ13Corg show negative excursions in the middle (CIE-I) and end (CIE-II) 383 

Changhsingian, the latter roughly corresponds to End-Permian plant extinction (EPPE) in NCP 384 

through the comparison of continental weathering trend. We infer CIE-II to be the global negative 385 

excursion associated with the EPME, because it occurs in the Meishan and other sections globally, 386 

and is synchronous with peaks in nickel concentration and Ni/Al ratio and with the EPPE. 387 

2) Two short-duration episodes with greater humidity, corresponding to CIE-I and CIE-II 388 

occurred in the context of the prevailing arid climate from the Changhsingian to the early Induan, 389 

inferred from the low kaolinite content and weak continental weathering. The extremely high fusinite 390 

content of kerogen macerals and their vertically increasing trend indicates that frequent wildfires 391 

occurred in the run up the end Permian. Widespread and frequent wildfire is likely to have been a 392 

causal mechanism for the destruction of terrestrial vegetation and ecosystems at the EPME. The 393 

appearance of the mudstone clastics coincident with the CIE-II may indicate the increased soil 394 

erosion after the collapse of land vegetation systems. The mudstone color shift to green may 395 
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indicated the development of less drained alluvial landscapes (e.g., more persistently wet), this is 396 

consistent with the change in CIA values. 397 
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Figure captions 646 

 647 

 648 

Figure 1. Location and geological context for the study area. a, Paleogeographic reconstruction for 649 

the Lopingian (late Permian) showing location of North China Plate (modified from Ziegler et al., 650 

1997); b, Generalized tectonic map of present-day China showing the location of the North China 651 

Plate and the study area (modified from Ren, 1987), Abbreviations: CAO = Central Asian Orogen; 652 

SG = Songpan-Ganzi; QQKDO = Qinling-Qilian-Kunlun-Dabie Orogen; c, Paleofacies map of the 653 

North China Plate during the Changhsingian (Sunjiagou Formation) showing the location of study 654 

area (modified from Shang, 1997), Abbreviations: R1= river; L1= lake; L2= delta; d, Local 655 

geological map of the Yuzhou coalfield showing the locations of the borehole core sections in the 656 

study area, Abbreviations: Q=Quaternary; L1=Lower Triassic; P3=Upper Permian; P2=Middle 657 

Permian; C2= Carboniferous; Ꞓ= Cambrian, and the number represents drill hole number, e.g., 21-1; 658 

e, Schematic diagram showing the basin-mountain relationships and the location of the North China 659 
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Plate during the Lopingian (modified from Shang, 1997; Zhao et al., 2017). 660 

 661 

 662 

 663 

Figure 2. Stratigraphic framework for the Permian-Triassic boundary strata from the Yuzhou 664 

coalfield. Note: Lithology from Yang and Lei (1987) and the colors filling in lithology are similar to 665 

that of the rocks. a, Strata in the basin highlighting the study interval; b, Formation thicknesses from 666 

Guo et al. (1991) and Pan et al. (2008); c, Stratigraphic division of the Sunjiagou Formation from 667 

Yang and Lei (1987) and Wang (1997); d, Marker beds from Guo et al. (1991); e, Summary 668 

sedimentary environments from Guo et al. (1991); f, Fossil plant assemblages from Yang and Wang 669 

(2012); g, Floral provinces from Wang and Wang (1986), Pan et al. (2008) and Yang and Wang 670 

(2012); h, Vertical distribution of plant fossils from Chu et al. (2015) showing the extinction near the 671 

boundary of the Sunjiagou and Liujiugou formations; i, Basin type from Hao et al. (2014); j, 672 
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Tectonic events from Shang (1997) and Zhao et al. (2017). Abbreviations: Ol. = Olenekian; Forma. = 673 

Formation; He. = Heshanggou; S.S.H. = Shangshihezi; C = Clay; S = Siltstone; Sa. = Sandstone; Thi. 674 

= Thick; Mark. B. = Marker bed; 8# = 8# coal seams; P.D.S.st: Pingdingshan sandstone; La. m.: 675 

Lamellibranchiate marl; Gyp. Li.: Gypsum lime-nodule; J.D.S.: Jindoushan Sandstone; Dep. En. = 676 

Depositional environment; Sporo. = Sporo-pollen; Ginkgo.: Ginkgopsida; Sp.: Sphenopsida; Pl.:  677 

 678 

 679 

Figure 3. Change in value of TOC, δ13Corg, Hg and nickel concentrations, kerogen macerals, MIA 680 

and CIA, and clay minerals component in the study area. Note: the colors filling in lithology are 681 

similar to that of rocks, the interpretation of the deposition environment is from Guo et al. (1991) and 682 

Pan et al. (2008), and pay attention to the scales in column f and i. Abbreviations: C = claystone; S = 683 

siltstone; Sa. = sandstone; Mark. Bed = marker bed; Dep. En. = depositional environment; J.D.S st = 684 

Jindoushan Sandstone; P.D.S. sandstone = Pingdingshan sandstone; PTB = Permian-Triassic 685 

boundary; EPME = End Permian mass extinction. 686 

 687 
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 688 

Figure 4. Photomicrographs showing microstructure characteristics of kerogen macerals in the study 689 

area. a, overview showing characteristics of kerogen macerals (transmitted light, sample #23); b and 690 

c, fusinite (transmitted light, #45); d and e, vitrinite (transmitted light, sample #16 and #49); f and g, 691 

suberinite (transmitted light and fluorescence, respectively, sample #42); h, sapropelinite 692 

(transmitted light, sample #22); i and j, sapropelinite (transmitted light and fluorescence, respectively, 693 

sample #50) 694 

 695 

 696 

Figure 5. Qm-F-Lt diagram of sandstone and A-CN-K diagram of mudstone in the study area. a, 697 

Qm-F-Lt diagram of sandstone samples from Changhsingian to early Induan showing the main 698 
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provenance area of continental block (modified from Dickinson, 1985). Abbreviations: Qm = 699 

monocrystalline quartz; F = feldspar (plagioclase + K-feldspar); Lt = total lithics (lithics + 700 

polycrystalline quartz); A = Continental block; B = Magmatic arc; C = Recycled orogen. b, A-CN-K 701 

diagram of mudstone samples from Changhsingian to early Induan with the chemical index of 702 

alteration (CIA) scale to the left, showing the possible influence of Potassium metasomatism. For 703 

comparison, the average upper crust CIA value of southern and interior North China Craton are 704 

shown (modified from Cao et al., 2019). Abbreviations: A = Al2O3; CN = CaO*+Na2O; K = K2O; 705 

CIA= chemical index of alteration; Ka = kaolinite; Gi = gibbsite; Il = illite; PI = Plagioclase; Chl = 706 

chlorite; Sm = smectite; Ksp = K-feldspar; INCC = Interior North China Craton; SNCC = Southern 707 

North China Craton. 708 

 709 

 710 

Figure 6. X-ray diffraction (XRD) patterns of clay fractions of typical samples in the study area. N, E 711 

and T designate spectra of a naturally-oriented slide, ethylene-glycol saturated for oriented slide and 712 

high-temperature treated at 450℃ for oriented slide, respectively. a, XRD patterns showing high 713 

content of illite-smectite mix layer and kaolinite (Sunjiagou Formation, sample #23); b, XRD 714 

patterns showing high content of illite-smectite mix layer and lowest kaolinite content (Sunjiagou 715 

Formation, sample #34); c, XRD patterns showing high content of illite-smectite mix layer and less 716 

kaolinite content (Sunjiagou Formation, sample #45). Abbreviations: I/S = illite-smectite mixed layer; 717 

K = kaolinite; I = illite. 718 

 719 



34 
 

 720 

 721 

Figure 7. Comparison among weathering trend, carbon isotope records, inertinite content, sea-level, 722 

and the paleoenvironment events from Changhsingian to early Induan. Age stratigraphic framework 723 

from Shen S. et al. (2019); (1) represents P-T boundary age: 251.902 ± 0.024Ma; a, red curve 724 

represent a weathering trend by MIA and CIA in the study area, and the black curve represent a 725 

weathering trend by CIA in Yima section (southern NCP) near the study area (Cao et al., 2019); b, 726 

vertical change trend of δ13Corg in the study area showing two negative isotope excursions near the 727 

middle and end of the Changhsingian; c, d and e, δ13Corg from the marine (Meishan) and terrestrial 728 

(Chahe and Dalongkou) sections by Nan and Liu (2004), Zhang et al. (2016) and Shen J et al. (2019); 729 

f, inertinite content from the present study; g, sea-level curve (relative to current sea level) of the 730 

Meishan section from Cao et al. (2009); h, paleoclimate change inferred from clay mineral 731 

component, CIA and MIA. Abbreviations: ear. Ind. = early Induan; w. & d. = warm & dry; w. & s. w. 732 

= warm & slight wet; w. & w. = warm & wet; PTB = Permian-Triassic boundary; EPME = End 733 

Permian mass extinction; EPPE = End Permian plant extinction. 734 

 735 

 736 
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 737 

 738 

Figure 8. Pictures showing a lot of mudstone clastics was observed in uppermost Sunjiagou 739 

Formation in NCP. a: lots of greyish-green and purplish-red mudstone clastics occur in the lake 740 

mudstone associated with the CIE-Ⅱ and last into early Triassic in the drill core ZK21-1, Henan 741 

province (southern NCP). Note: the colors filling in lithology are similar to that of rocks, and the 742 

numbers (e.g.,(1)-(3)) represent the vertical order of lithology. b: lots of mudstone clastics was 743 

observed in the uppermost Sunjiagou Formation in borehole core profile in Liujiang area, Hebei 744 

province (middle NCP). c: Picture of Shuiyuguan section (Shaanxi province, middle NCP) showing 745 

the boundary of Sunjiagou and Liujiagou formations with highlighted box enlarged in d. d: 746 

enlargement from c showing details of mudstone clastics in the uppermost Sunjiagou Formation.  747 


