8,962 research outputs found

    The Higgs Sector of the Minimal 3 3 1 Model Revisited

    Full text link
    The mass spectrum and the eigenstates of the Higgs sector of the minimal 3 3 1 model are revisited in detail. There are discrepancies between our results and previous results by another author.Comment: 20 pages, latex, two figures. One note and one reference are adde

    Evolution of Nuclear Shell Structure due to the Pion Exchange Potential

    Full text link
    The evolution of nuclear shell structure is investigated for the first time within density-dependent relativistic Hartree-Fock theory and the role of π\pi-exchange potential is studied in detail. The energy differences between the neutron orbits \Lrb{\nu1h_{9/2},\nu 1i_{13/2}} in the N=82 isotones and between the proton ones \Lrb{\pi1g_{7/2},\pi1h_{11/2}} in the Z=50 isotopes are extracted as a function of neutron excess N−ZN-Z. A kink around Z=58Z = 58 for the N=82 isotones is found as an effect resulting from pion correlations. It is shown that the inclusion of π\pi-coupling plays a central role to provide realistic isospin dependence of the energy differences. In particular, the tensor part of the π\pi-coupling has an important effect on the characteristic isospin dependence observed in recent experiments.Comment: 4 pages and 4 figure

    Algorithmic randomness for Doob's martingale convergence theorem in continuous time

    Full text link
    We study Doob's martingale convergence theorem for computable continuous time martingales on Brownian motion, in the context of algorithmic randomness. A characterization of the class of sample points for which the theorem holds is given. Such points are given the name of Doob random points. It is shown that a point is Doob random if its tail is computably random in a certain sense. Moreover, Doob randomness is strictly weaker than computable randomness and is incomparable with Schnorr randomness

    Functional genomics approaches to improve pre-clinical drug screening and biomarker discovery.

    Get PDF
    Funder: European Society for Medical Oncology (ESMO); Id: http://dx.doi.org/10.13039/501100007075Funder: American Society of Clinical Oncology (ASCO); Id: http://dx.doi.org/10.13039/100006293Advances in sequencing technology have enabled the genomic and transcriptomic characterization of human malignancies with unprecedented detail. However, this wealth of information has been slow to translate into clinically meaningful outcomes. Different models to study human cancers have been established and extensively characterized. Using these models, functional genomic screens and pre-clinical drug screening platforms have identified genetic dependencies that can be exploited with drug therapy. These genetic dependencies can also be used as biomarkers to predict response to treatment. For many cancers, the identification of such biomarkers remains elusive. In this review, we discuss the development and characterization of models used to study human cancers, RNA interference and CRISPR screens to identify genetic dependencies, large-scale pharmacogenomics studies and drug screening approaches to improve pre-clinical drug screening and biomarker discovery

    Skew scattering in dilute ferromagnetic alloys

    Get PDF
    The challenging problem of skew scattering for Hall effects in dilute ferromagnetic alloys, with intertwined effects of spin-orbit coupling, magnetism and impurity scattering, is studied here from first principles. Our main aim is to identify chemical trends and work out simple rules for large skew scattering in terms of the impurity and host states at the Fermi surface, with particular emphasis on the interplay of the spin and anomalous Hall effects in one and the same system. The predicted trends are benchmarked by referring to three different \emph{ab initio} methods based on different approximations with respect to the electronic structure and transport properties.Comment: 5 pages, 4 figure

    Synthesis and Photocatalytic Activity for Toluene Removal of CDs/TiO2 - Zeolite Y

    Get PDF
    Hydrothermally synthesized carbon nanodots (CDs) were impregnated on TiO2. The product (CDs/TiO2) was mechanically mixed with zeolite Y for application in toluene photocatalytic oxidation reaction under UV radiation. Material properties of the samples were investigated by different methods. Toluene vapor was chosen as a typical volatile organic compound to investigate the performance of CDs/TiO2 – zeolite Y photocatalyst when these technological parameters were changed: toluene concentration, gas flow rate, humidity and UV light intensity. In each reaction, only one parameter was changed and the remaining conditions were fixed. The toluene concentrations at the beginning and the end of each reaction were analyzed with the use of gas chromatography (GC). The results of different reaction conditions show the trends for toluene treatment of the CDs/TiO2 – zeolite Y catalyst, thereby providing specific explanations for these trends. The experiments also show that toluene removal is highest when the toluene concentration in the inlet gas is 314 ppmv, the flow rate is 3 L/h, the humidity is 60%, and the catalyst (CDs/TiO2 – zeolite Y composite with 70% zeolite in weight) is illuminated by 4 UV lamps. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

    Fractal analysis in particle dissolution: a review

    Get PDF
    Fractal is a geometric language to describe the objects, the systems, and the phenomenon spatially and temporally. This paper reviews the literature on fractal models developed to describe the dissolution of particles. Dissolution, the process by which a solid forms a homogeneous mixture with a solution, is the behavior of a population of particles rather than a single one in most of the cases. The fractal models developed for the particle population are reviewed on the basis of two key particle surface properties, namely, the surface fractal nature and the chemical reactivity of particle surfaces. In terms of the surface fractal nature, fractals have been used to describe the change in the superficial roughness of particles, surface area-particle size relation, and particle size distribution (PSD). In terms of the reactive fractal dimensions, the models that describe the dissolution process have been developed to obtain the empirical noninteger exponent, the reactive fractal dimension that can dictate the chemical reactivity of a solid surface. The comparison between the surface fractal dimension and the reactive fractal dimension provides the dissolution mechanisms in many aspects of surface morphology. Further research is necessary to modify the current models to coincide with the real industrial processes and production and to develop the specific models for a better understanding of many processes involving the dissolution of particles encountered in many areas, including pharmaceutical and chemical applications and hydrometallurgy
    • …
    corecore