Funder: European Society for Medical Oncology (ESMO); Id: http://dx.doi.org/10.13039/501100007075Funder: American Society of Clinical Oncology (ASCO); Id: http://dx.doi.org/10.13039/100006293Advances in sequencing technology have enabled the genomic and transcriptomic characterization of human malignancies with unprecedented detail. However, this wealth of information has been slow to translate into clinically meaningful outcomes. Different models to study human cancers have been established and extensively characterized. Using these models, functional genomic screens and pre-clinical drug screening platforms have identified genetic dependencies that can be exploited with drug therapy. These genetic dependencies can also be used as biomarkers to predict response to treatment. For many cancers, the identification of such biomarkers remains elusive. In this review, we discuss the development and characterization of models used to study human cancers, RNA interference and CRISPR screens to identify genetic dependencies, large-scale pharmacogenomics studies and drug screening approaches to improve pre-clinical drug screening and biomarker discovery