53,030 research outputs found
Single and Many Particle Correlation Functions and Uniform Phase Bases for Strongly Correlated Systems
The need for suitable many or infinite fermion correlation functions to
describe some low dimensional strongly correlated systems is discussed. This is
linked to the need for a correlated basis, in which the ground state may be
postive definite, and in which single particle correlations may suffice. A
particular trial basis is proposed, and applied to a certain quasi-1D model.
The model is a strip of the 2D square lattice wrapped around a cylinder, and is
related to the ladder geometries, but with periodic instead of open boundary
conditions along the edges. Analysis involves a novel mean-field approach and
exact diagonalisation. The model has a paramagnetic region and a Nagaoka
ferromagnetic region. The proposed basis is well suited to the model, and
single particle correlations in it have power law decay for the paramagnet,
where the charge motion is qualitatively hard core bosonic. The mean field also
leads to a BCS-type model with single particle long range order.Comment: 23 pages, in plain tex, 12 Postscript figures included. Accepted for
publication in J.Physics : Condensed Matte
Precipitation detector Patent
Precipitation detector and mechanism for stopping and restarting machinery at initiation and cessation of rai
Emergency braking for free piston energy converters
Free piston energy converters are a potential technology for future hybrid vehicles, as well as stationary power generation applications. A candidate 2-stroke system comprises of two opposing combustion chambers with a common piston rod, and integrated with a tubular permanent magnet electrical machine for the conversion of mechanical to electrical energy. A key issue for the ultimate adoption of such systems, however, is their robustness in the event of a fault to enable a safe shutdown, with minimal mechanical or electrical damage. The paper considers system braking issues and the importance of early fault detection. Results are presented to demonstrate the effectiveness of passive and active braking techniques for a range of dc-link supply voltage and operating output power
Lipid changes within the epidermis of living skin equivalents observed across a time-course by MALDI-MS imaging and profiling
Ā© 2015 Mitchell et al. Abstract Background: Mass spectrometry imaging (MSI) is a powerful tool for the study of intact tissue sections. Here, its application to the study of the distribution of lipids in sections of reconstructed living skin equivalents during their development and maturation is described. Methods: Living skin equivalent (LSE) samples were obtained at 14 days development, re-suspended in maintenance medium and incubated for 24 h after delivery. The medium was then changed, the LSE re-incubated and samples taken at 4, 6 and 24 h time points. Mass spectra and mass spectral images were recorded from 12 Ī¼m sections of the LSE taken at each time point for comparison using matrix assisted laser desorption ionisation mass spectrometry. Results: A large number of lipid species were identified in the LSE via accurate mass-measurement MS and MSMS experiments carried out directly on the tissue sections. MS images acquired at a spatial resolution of 50 Ī¼m Ć 50 Ī¼m showed the distribution of identified lipids within the developing LSE and changes in their distribution with time. In particular development of an epidermal layer was observable as a compaction of the distribution of phosphatidylcholine species. Conclusions: MSI can be used to study changes in lipid composition in LSE. Determination of the changes in lipid distribution during the maturation of the LSE will assist in the identification of treatment responses in future investigations
Macromolecular separation through a porous surface
A new technique for the separation of macromolecules is proposed and
investigated. A thin mesh with pores comparable to the radius of gyration of a
free chain is used to filter chains according to their length. Without a field
it has previously been shown that the permeability decays as a power law with
chain length. However by applying particular configurations of pulsed fields,
it is possible to have a permeability that decays as an exponential. This
faster decay gives much higher resolution of separation. We also propose a
modified screen containing an array of holes with barb-like protrusions running
parallel to the surface. When static friction is present between the
macromolecule and the protrusion, some of the chains get trapped for long
durations of time. By using this and a periodic modulation of an applied
electric field, high resolution can be attained.Comment: 18 pages latex, 6 postscript figures, using psfi
- ā¦