3,173 research outputs found

    Cold-water coral reef frameworks, megafaunal communities and evidence for coral carbonate mounds on the Hatton Bank, north east Atlantic

    Get PDF
    Offshore banks and seamounts sustain diverse megafaunal communities, including framework reefs formed by cold-water corals. Few studies have quantified environmental effects on the alpha or beta diversity of these communities. We adopted an interdisciplinary approach that used historical geophysical data to identify topographic highs on Hatton Bank, which were surveyed visually. The resulting photographic data were used to examine relationships between megafaunal communities and macrohabitat, the latter defined into six categories (mud, sand, cobbles, coral rubble, coral framework, rock). The survey stations revealed considerable small-scale variability in macrohabitat from exposed Late Palaeocene lava flows to quiescent muddy habitats and coral-built carbonate mounds. The first reported evidence for coral carbonate mound development in UK waters is presented, which was most pronounced near present-day or former sites of topographic change, suggesting that local current acceleration favoured coral framework growth and mound initiation. Alpha diversity varied significantly across macrohabitats, but not between rock and coral rubble, or between smaller grain sized categories of cobbles, sand and mud. Community composition differed between most macrohabitats, and variation in beta diversity across Hatton Bank was largely explained by fine-scale substratum. Certain megafauna were clearly associated with particular macrohabitats, with stylasterid corals notably associated with cobble and rock habitats and coral habitats characterized by a diverse community of suspension-feeders. The visual surveys also produced novel images of deep-water megafauna including a new photographic record of the gorgonian coral Paragorgia arborea, a species not previously reported from Rockall Plateau. Further interdisciplinary studies are needed to interpret beta diversity across these and other environmental gradients on Hatton Bank. It is clear that efforts are also needed to improve our understanding of the genetic connectivity and biogeography of vulnerable deep-water ecosystems and to develop predictive models of their occurrence that can help inform future conservation measures

    Simulations and measurements of the TTF phase-1 injector gun

    Get PDF
    International audienceThe TTF phase-1 injector will use a conventional thermionic triode gun as its electron source. The temporal structure of the injector will be obtained by the application of fast (<1 ns) pulses to the gun cathode. As it is necessary to operate the injector at a fixed average macropulse current of 8 mA, while having the ability to vary the repetition frequency of the micropulses, the gun has to function at peak currents varying from 100 mA to 400 mA. We report on both measurements and simulations (using EGUN) of the current-voltage characteristics of the TTF gun. In addition we report on measurements of the emittance of the gun over a limited range of current and voltage. The emittance is seen to be dependent upon the operating perveance and is smallest for perveances closest to the space-charge limited valu

    Finite-element modelling of mechanical behaviour of rapid manufactured textiles

    Get PDF
    Novel textile-like linked structures, realised using a rapid manufacturing (RM) process, have been proposed and developed recently. Various potential applications exist, and in most cases the mechanical performance must be evaluated. The present paper outlines a method to solve this problem by employing finite-element (FE) techniques at two scales, using the results of analysis at the meso-scale (the scale of the repeating unit) to provide equivalent non-linear spring behaviour for each textile link at the macro-scale. Validation with experimental test data from each scale was performed and these results are presented. Initial results overestimated mechanical performance. Microscopy suggested that this may be due to edge porosity in the specimens, and the dimensions of the FE models were adjusted accordingly as an initial approach to account for this. Predictions incorporating this modification exhibited excellent agreement with experimental measurements. The current work demonstrates both a technique, which could be automated for use in the design environment, and the potential value of developing an integrated process simulation to provide local material property data for the FE model

    Effect of reaction atmosphere on catalytic CO oxidation over Cu-based bimetallic nanoclusters on a CeO2 support

    Get PDF
    Understanding the nature of active sites and the catalytic properties of oxide-supported bimetallic clusters under reaction conditions remains challenging. In this study, we combine first-principles calculations with genetic algorithm and grand canonical Monte Carlo methods to reveal the structures and compositions of CeO2-supported Cu-based bimetallic clusters in an oxygen-rich environment. Oxidized Cu4X4 (X = Pd, Pt, and Rh) bimetallic clusters on CeO2(111) are stable and exhibit different catalytic properties during CO oxidation compared with the pristine bimetallic clusters. Microkinetic simulations predict that CeO2(111)-supported Cu4Pd4O10, Cu4Pt4O11, and Cu4Rh4O14 clusters have much higher CO oxidation activity than the supported Cu4Pd4, Cu4Pt4, and Cu4Rh4 clusters; this is ascribed to the moderate CO adsorption strength and active oxygen on oxidized alloy clusters. A mechanistic study suggests that CO oxidation occurs via the O2 associative reaction mechanism on the Cu4Pd4O10 and Cu4Pt4O11 clusters, while it proceeds through the O2 dissociative reaction mechanism on the Cu4Rh4O14 cluster. Our calculations further predict that CO oxidation on the Cu4Rh4O14 cluster exhibits a low apparent activation energy, indicating that the oxidized cluster possesses excellent CO oxidation activity. This work demonstrates that the catalytic activity and reaction mechanism vary with the composition and oxidation state of the alloy nanocluster under the reaction conditions and emphasizes the influence of the reaction atmosphere on the reaction mechanisms and catalytic activity of oxide-supported alloy catalysts

    Learning from clinical trials of neoadjuvant checkpoint blockade

    Get PDF
    Neoadjuvant checkpoint inhibition, in which the therapy is administered before surgery, is a promising new approach to managing bulky but resectable melanoma, and is also being explored in other cancers. This strategy has a high pathologic response rate, which correlates with survival outcomes. The fact that biopsies are routinely available provides a unique opportunity for understanding the responses to therapy and carrying out reverse translation in which these data are used to select therapies in the clinic or in trials that are more likely to improve patient outcomes. In this Perspective, we discuss the rationale for neoadjuvant immunotherapy in resectable solid tumors based on preclinical and human translational data, summarize the results of recent clinical trials and ongoing research, and focus on future directions for enhancing reverse translation.</p

    Determination of the parameters of semiconducting CdF2:In with Schottky barriers from radio-frequency measurements

    Full text link
    Physical properties of semiconducting CdF_2 crystals doped with In are determined from measurements of the radio-frequency response of a sample with Schottky barriers at frequencies 10 - 10^6 Hz. The dc conductivity, the activation energy of the amphoteric impurity, and the total concentration of the active In ions in CdF_2 are found through an equivalent-circuit analysis of the frequency dependencies of the sample complex impedance at temperatures from 20 K to 300 K. Kinetic coefficients determining the thermally induced transitions between the deep and the shallow states of the In impurity and the barrier height between these states are obtained from the time-dependent radio-frequency response after illumination of the material. The results on the low-frequency conductivity in CdF_2:In are compared with submillimeter (10^{11} - 10^{12} Hz) measurements and with room-temperature infrared measurements of undoped CdF_2. The low-frequency impedance measurements of semiconductor samples with Schottky barriers are shown to be a good tool for investigation of the physical properties of semiconductors.Comment: 9 pages, 7 figure

    Early stage morphology of quench condensed Ag, Pb and Pb/Ag hybrid films

    Full text link
    Scanning Tunneling Microscopy (STM) has been used to study the morphology of Ag, Pb and Pb/Ag bilayer films fabricated by quench condensation of the elements onto cold (T=77K), inert and atomically flat Highly Oriented Pyrolytic Graphite (HOPG) substrates. All films are thinner than 10 nm and show a granular structure that is consistent with earlier studies of QC films. The average lateral diameter, 2rˉ\bar {2r}, of the Ag grains, however, depends on whether the Ag is deposited directly on HOPG (2rˉ\bar {2r} = 13 nm) or on a Pb film consisting of a single layer of Pb grains (2rˉ\bar {2r} = 26.8 nm). In addition, the critical thickness for electrical conduction (dGd_{G}) of Pb/Ag films on inert glass substrates is substantially larger than for pure Ag films. These results are evidence that the structure of the underlying substrate exerts an influence on the size of the grains in QC films. We propose a qualitative explanation for this previously unencountered phenomenon.Comment: 11 pages, 3 figures and one tabl

    Diabetic Nephropathy:Perspective on Novel Molecular Mechanisms

    Get PDF
    Diabetes mellitus (DM) is the major cause of end-stage renal disease (ESRD) globally, and novel treatments are urgently needed. Current therapeutic approaches for diabetic nephropathy (DN) are focussing on blood pressure control with inhibitors of the renin-angiotensin-aldosterone system, on glycaemic and lipid control, and life-style changes. In this review, we highlight new molecular insights aiding our understanding of the initiation and progression of DN, including glomerular insulin resistance, dysregulation of cellular substrate utilisation, podocyte-endothelial communication, and inhibition of tubular sodium coupled glucose reabsorption. We believe that these mechanisms offer new therapeutic targets that can be exploited to develop important renoprotective treatments for DN over the next decade

    Stability of the Scalar Potential and Symmetry Breaking in the Economical 3-3-1 Model

    Get PDF
    A detailed study of the criteria for stability of the scalar potential and the proper electroweak symmetry breaking pattern in the economical 3-3-1 model, is presented. For the analysis we use, and improve, a method previously developed to study the scalar potential in the two-Higgs-doublet extension of the standard model. A new theorem related to the stability of the potential is stated. As a consequence of this study, the consistency of the economical 3-3-1 model emerges.Comment: to be published in EPJ C, 13 page
    • …
    corecore