1,239 research outputs found
Query complexity for searching multiple marked states from an unsorted database
An important and usual problem is to search all states we want from a
database with a large number of states. In such, recall is vital. Grover's
original quantum search algorithm has been generalized to the case of multiple
solutions, but no one has calculated the query complexity in this case. We will
use a generalized algorithm with higher precision to solve such a search
problem that we should find all marked states and show that the practical query
complexity increases with the number of marked states. In the end we will
introduce an algorithm for the problem on a ``duality computer'' and show its
advantage over other algorithms.Comment: 4 pages,4 figures,twocolum
Density Matrix in Quantum Mechanics and Distinctness of Ensembles Having the Same Compressed Density Matrix
We clarify different definitions of the density matrix by proposing the use
of different names, the full density matrix for a single-closed quantum system,
the compressed density matrix for the averaged single molecule state from an
ensemble of molecules, and the reduced density matrix for a part of an
entangled quantum system, respectively. We show that ensembles with the same
compressed density matrix can be physically distinguished by observing
fluctuations of various observables. This is in contrast to a general belief
that ensembles with the same compressed density matrix are identical. Explicit
expression for the fluctuation of an observable in a specified ensemble is
given. We have discussed the nature of nuclear magnetic resonance quantum
computing. We show that the conclusion that there is no quantum entanglement in
the current nuclear magnetic resonance quantum computing experiment is based on
the unjustified belief that ensembles having the same compressed density matrix
are identical physically. Related issues in quantum communication are also
discussed.Comment: 26 pages. To appear in Foundations of Physics, 36 (8), 200
The Landau Pole and decays in the 331 bilepton model
We calculate the decay widths and branching ratios of the extra neutral boson
predicted by the 331 bilepton model in the framework of two
different particle contents. These calculations are performed taken into
account oblique radiative corrections, and Flavor Changing Neutral Currents
(FCNC) under the ansatz of Matsuda as a texture for the quark mass matrices.
Contributions of the order of are obtained in the branching
ratios, and partial widths about one order of magnitude bigger in relation with
other non- and bilepton models are also obtained. A Landau-like pole arise at
3.5 TeV considering the full particle content of the minimal model (MM), where
the exotic sector is considered as a degenerated spectrum at 3 TeV scale. The
Landau pole problem can be avoid at the TeV scales if a new leptonic content
running below the threshold at TeV is implemented as suggested by other
authors.Comment: 20 pages, 5 figures, LaTeX2
Thermal Unparticles: A New Form of Energy Density in the Universe
Unparticle \U with scaling dimension d_\U has peculiar thermal properties
due to its unique phase space structure. We find that the equation of state
parameter \omega_\U, the ratio of pressure to energy density, is given by
1/(2d_\U +1) providing a new form of energy in our universe. In an expanding
universe, the unparticle energy density \rho_\U(T) evolves dramatically
differently from that for photons. For d_\U >1, even if \rho_\U(T_D) at a
high decoupling temperature is very small, it is possible to have a large
relic density \rho_\U(T^0_\gamma) at present photon temperature ,
large enough to play the role of dark matter. We calculate and
\rho_\U(T^0_\gamma) using photon-unparticle interactions for illustration.Comment: 5 pages; v3, journal version
Lensing at cosmological scales: a test of higher dimensional gravity
Recent developments in gravitational lensing astronomy have paved the way to
genuine mappings of the gravitational potential at cosmological scales. We
stress that comparing these data with traditional large scale structure surveys
will provide us with a test of gravity at such scales. These constraints could
be of great importance in the framework of higher dimensional cosmological
models.Comment: 4 pages, latex, 3 figure
Probing Sub-Micron Forces by Interferometry of Bose-Einstein Condensed Atoms
We propose a technique, using interferometry of Bose-Einstein condensed
alkali atoms, for the detection of sub-micron-range forces. It may extend
present searches at 1 micron by 6 to 9 orders of magnitude, deep into the
theoretically interesting regime of 1000 times gravity. We give several
examples of both four-dimensional particles (moduli), as well as
higher-dimensional particles -- vectors and scalars in a large bulk-- that
could mediate forces accessible by this technique.Comment: 32 pages, 5 figures, RevTeX4, expanded discussion of interactions,
references added, to appear in PR
Bounds on the dipole moments of the tau-neutrino via the process in a 331 model
We obtain limits on the anomalous magnetic and electric dipole moments of the
through the reaction
and in the framework of a 331 model. We consider initial-state radiation, and
neglect and photon exchange diagrams. The results are based on the data
reported by the L3 Collaboration at LEP, and compare favorably with the limits
obtained in other models, complementing previous studies on the dipole moments.Comment: 13 pages, 4 figures, to be published in The European Physical J C.
arXiv admin note: substantial text overlap with arXiv:hep-ph/060527
The taxonomy and anatomy of rauisuchian archosaurs from the Late Triassic of Germany and Poland
The German Late Triassic archosaur Teratosaurus suevicus is a historically important taxon, being the first described rauisuchian. Unfortunately the holotype is a single element, a maxilla, which is poorly preserved and incomplete. We redescribe this maxilla and identify a single potential autapomorphy. The fragmentary type specimen complicates attempts to refer additional material to this taxon, and other unassociated archosaur and rauisuchian specimens from the Mittlerer Stubensandstein of Germany cannot be referred to T. suevicus with any degree of confidence. The stratigraphically older T. silesiacus, from the upper Carnian of Poland, is represented by a much more complete and better preserved specimen. Comparison of the maxillae of T. suevicus and T. silesiacus reveals that the two are distinct taxa, contra recent suggestions, but also that they do not share any synapomorphies or a unique combination of characters relative to Postosuchus kirkpatricki and other rauisuchians. Thus, the Polish material must be transferred to a new genus, Polonosuchus gen. nov. Both Polonosuchus and Teratosaurus are very similar to Postosuchus kirkpatricki, and the three taxa are likely closely related
First Measurement of Z/gamma* Production in Compton Scattering of Quasi-real Photons
We report the first observation of Z/gamma* production in Compton scattering
of quasi-real photons. This is a subprocess of the reaction e+e- to
e+e-Z/gamma*, where one of the final state electrons is undetected.
Approximately 55 pb-1 of data collected in the year 1997 at an e+e-
centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been
analysed. The Z/gamma* from Compton scattering has been detected in the
hadronic decay channel. Within well defined kinematic bounds, we measure the
product of cross-section and Z/gamma* branching ratio to hadrons to be
(0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV,
dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60
GeV, dominated by (e)egamma* production, this product is found to be
(4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo
event generators, grc4f and PYTHIA.Comment: 18 pages, LaTeX, 5 eps figures included, submitted to Physics Letters
Measurement of open charm production in +Au collisions at =200 GeV
We present the first comprehensive measurement of and
their charge conjugate states at mid-rapidity in +Au collisions at
=200 GeV using the STAR TPC. The directly measured open charm
multiplicity distribution covers a broad transverse momentum region of
0 GeV/. The measured at mid-rapidity for is
and the measured
and ratios are approximately equal with a magnitude of . The total cross section per
nucleon-nucleon collision extracted from this study is mb. The direct measurement of open charm production is
consistent with STAR single electron data. This cross section is higher than
expectations from PYTHIA and other pQCD calculations. The measured
distribution is harder than the pQCD prediction using the Peterson
fragmentation function.Comment: Quark Matter 2004 Proceeding
- …
