421 research outputs found

    Bone Health in a Tertiary-Care Gastroenterology and Hepatology Population

    Get PDF
    Glucocorticoid use is a major risk factor for osteoporosis. Overall rates of glucocorticoid use and bone health preventive measures in gastroenterology and hepatology populations are unknown

    Body Composition and Genetic Lipodystrophy Risk Score Associate With Nonalcoholic Fatty Liver Disease and Liver Fibrosis

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150618/1/hep41391.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150618/2/hep41391_am.pd

    Metabolomic Profiling in Relation to New-Onset Atrial Fibrillation (from the Framingham Heart Study)

    Get PDF
    Previous studies have shown several metabolic biomarkers to be associated with prevalent and incident atrial fibrillation (AF), but the results have not been replicated. We investigated metabolite profiles of 2,458 European ancestry participants from the Framingham Heart Study without AF at the index examination and followed them for 10 years for new-onset AF. Amino acids, organic acids, lipids, and other plasma metabolites were profiled by liquid chromatography–tandem mass spectrometry using fasting plasma samples. We conducted Cox proportional hazard analyses for association between metabolites and new-onset AF. We performed hypothesis-generating analysis to identify novel metabolites and hypothesis-testing analysis to confirm the previously reported associations between metabolites and AF. Mean age was 55.1 ± 9.9 years, and 53% were women. Incident AF developed in 156 participants (6.3%) in 10 years of follow-up. A total of 217 metabolites were examined, consisting of 54 positively charged metabolites, 59 negatively charged metabolites, and 104 lipids. None of the 217 metabolites met our a priori specified Bonferroni corrected level of significance in the multivariate analyses. We were unable to replicate previous results demonstrating associations between metabolites that we had measured and AF. In conclusion, in our metabolomics approach, none of the metabolites we tested were significantly associated with the risk of future AF

    Pulsed Feedback Defers Cellular Differentiation

    Get PDF
    Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable “polyphasic” positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a “timer” that operates over timescales much longer than a cell cycle

    An atom efficient, single-source precursor route to plasmonic CuS nanocrystals

    Get PDF
    The synthesis of colloidal semiconductor nanocrystals (NCs) from single-source precursors offers simplified manufacturing processes at the cost of reduced atom efficiency. Self-capping routes have the potential to maximise this efficiency although investigation has so far been limited to organic solvents. Here we present the synthesis of copper sulfide NCs via the decomposition of a copper dithiocarbamate complex in water. Nanocrystalline covellite particles were prepared without the need for additional capping ligand and exhibited a hollow nanosphere morphology. Mass spectrometry of the water-stable NCs indicated the presence of a number of surface ligands, including a small amine fragment of the single-source precursor (SSP) complex. A broad plasmon resonance in the near-infrared (NIR) at 990 nm was also observed and the photothermal effect of this demonstrated. Cytotoxicity experiments indicated cell viability remained above 95% for NC concentrations up to 1 mg mL(−1), indicating high biocompatibility

    IT-assisted comprehensive geriatric assessment for residents in care homes: Quasiexperimental longitudinal study

    Get PDF
    Background: Frailty interventions such as Comprehensive Geriatric Assessment (CGA) can provide significant benefits for older adults living with frailty. However, incorporating such proactive interventions into primary care remains a challenge. We developed an IT-assisted CGA (i-CGA) process, which includes advance care planning (ACP). We assessed if, in older care home residents, particularly those with severe frailty, i-CGA could improve access to advance care planning discussions and reduce unplanned hospitalisations. Method: As a quality improvement project we progressively incorporated our i-CGA process into routine primary care for older care home residents, and used a quasi-experimental approach to assess its interim impact. Residents were assessed for frailty by General Practitioners. Proactive i-CGAs were completed, including consideration of traditional CGA domains, deprescribing and ACP discussions. Interim analysis was conducted at 1 year: documented completion, preferences and adherence to ACPs, unplanned hospital admissions, and mortality rates were compared for i-CGA and control (usual care) groups, 1-year post-i-CGA or post-frailty diagnosis respectively. Documented ACP preferences and place of death were compared using the Chi-Square Test. Unplanned hospital admissions and bed days were analysed using the Mann-Whitney U test. Survival was estimated using Kaplan-Meier survival curves. Results: At one year, the i-CGA group comprised 196 residents (severe frailty 111, 57%); the control group 100 (severe frailty 56, 56%). ACP was documented in 100% of the i-CGA group, vs. 72% of control group, p < 0.0001. 85% (94/111) of severely frail i-CGA residents preferred not to be hospitalised if they became acutely unwell. For those with severe frailty, mean unplanned admissions in the control (usual care) group increased from 0.87 (95% confidence interval ± 0.25) per person year alive to 2.05 ± 1.37, while in the i-CGA group they fell from 0.86 ± 0.24 to 0.68 ± 0.37, p = 0.22. Preferred place of death was largely adhered to in both groups, where documented. Of those with severe frailty, 55% (62/111) of the i-CGA group died, vs. 77% (43/56) of the control group, p = 0.0013. Conclusions: Proactive, community-based i-CGA can improve documentation of care home residents’ ACP preferences, and may reduce unplanned hospital admissions. In severely frail residents, a mortality reduction was seen in those who received an i-CGA

    Exocrine Proteins Including Trypsin(ogen) as a Key Biomarker in Type 1 Diabetes

    Get PDF
       Objective Proteomic profiling can identify useful biomarkers. Monozygotic(MZ) twins, discordant for a condition represent an ideal test population. We aimed to investigate and validate proteomic profiling in twins with type 1 diabetes and in other well characterised cohorts. Research Design and Methods A broad, multiplex analysis of 4068 proteins in sera from MZ twins concordant (n=43) and discordant for type 1 diabetes (n=27) identified major differences which were subsequently validated by a trypsin(ogen) assay in MZ pairs concordant (n=39) and discordant (n=42) for type 1 diabetes, individuals at-risk (n=195) and with type 1 diabetes (n=990), as well as with non-insulin requiring adult-onset diabetes diagnosed as either autoimmune (n=96) or type 2 (n=291). Results Proteomic analysis identified major differences between exocrine enzyme levels in discordant MZ twin pairs despite strong correlation between twins, whether concordant or discordant for type 1 diabetes (p Conclusions Type 1 diabetes is associated with altered exocrine function, even before onset. Twin data suggest roles for genetic and non-genetically determined factors. Exocrine/endocrine interactions are important under-investigated factors in type 1 diabetes.</p

    Modulation of enhancer looping and differential gene targeting by Epstein-Barr virus transcription factors directs cellular reprogramming

    Get PDF
    Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors

    Summary and Highlights of the SPARC-Reanalysis Intercomparison Project

    Get PDF
    The climate research community uses global atmospheric reanalysis data sets to understand a wide range of processes and variability in the atmosphere; they are a particularly powerful tool for studying phenomena that cannot be directly observed. Different reanalyses may give very different results for the same diagnostics. The Stratosphere troposphere Processes And their Role in Climate (SPARC) Reanalysis Intercomparison Project (S-RIP) is a coordinated activity to compare key diagnostics that are important for stratospheric processes and their tropospheric connections among available reanalyses. S-RIP has been identifying differences among reanalyses and their underlying causes, providing guidance on appropriate usage of reanalysis products in scientific studies (particularly those of relevance to SPARC), and contributing to future improvements in the reanalysis products by establishing collaborative links between reanalysis centres and data users. S-RIP emphasizes diagnostics of the upper troposphere, stratosphere, and lower mesosphere. The draft S-RIP final report is expected to be completed in 2018. This poster gives a summary of the S-RIP project and presents highlights including results on the Brewer-Dobson circulation, stratosphere/troposphere dynamical coupling, the extra-tropical upper troposphere / lower stratosphere, the tropical tropopause layer, the quasi-biennial oscillation, lower stratospheric polar processing, and the upper stratosphere/lower mesosphere
    corecore