5,872 research outputs found

    Right-tailed Testing of Variance for Non-Normal Distributions

    Get PDF
    A new test of variance for non-normal distribution with fewer restrictions than the current tests is proposed. Simulation study shows that the new test controls the Type I error rate well, and has power performance comparable to the competitors. In addition, it can be used without restrictions

    Phonon lasing from optical frequency comb illumination of a trapped ion

    Full text link
    An atomic transition can be addressed by a single tooth of an optical frequency comb if the excited state lifetime (τ\tau) is significantly longer than the pulse repetition period (TrT_\mathrm{r}). In the crossover regime between fully-resolved and unresolved comb teeth (τ⪅Tr\tau \lessapprox T_\mathrm{r}), we observe Doppler cooling of a pre-cooled trapped atomic ion by a single tooth of a frequency-doubled optical frequency comb. We find that for initially hot ions, a multi-tooth effect gives rise to lasing of the ion's harmonic motion in the trap, verified by acoustic injection locking. The gain saturation of this phonon laser action leads to a comb of steady-state oscillation amplitudes, allowing hot ions to be loaded directly into the trap and laser cooled to crystallization despite the presence of hundreds of blue-detuned teeth.Comment: 5 pages, 4 figure

    HSCO+^+ and DSCO+^+: a multi-technique approach in the laboratory for the spectroscopy of interstellar ions

    Full text link
    Protonated molecular species have been proven to be abundant in the interstellar gas. This class of molecules is also pivotal for the determination of important physical parameters for the ISM evolution (e.g. gas ionisation fraction) or as tracers of non-polar, hence not directly observable, species. The identification of these molecular species through radioastronomical observations is directly linked to a precise laboratory spectral characterisation. The goal of the present work is to extend the laboratory measurements of the pure rotational spectrum of the ground electronic state of protonated carbonyl sulfide (HSCO+^+) and its deuterium substituted isotopomer (DSCO+^+). At the same time, we show how implementing different laboratory techniques allows the determination of different spectroscopical properties of asymmetric-top protonated species. Three different high-resolution experiments were involved to detected for the first time the b−b-type rotational spectrum of HSCO+^+, and to extend, well into the sub-millimeter region, the a−a-type spectrum of the same molecular species and DSCO+^+. The electronic ground-state of both ions have been investigated in the 273-405 GHz frequency range, allowing the detection of 60 and 50 new rotational transitions for HSCO+^+ and DSCO+^+, respectively. The combination of our new measurements with the three rotational transitions previously observed in the microwave region permits the rest frequencies of the astronomically most relevant transitions to be predicted to better than 100 kHz for both HSCO+^+ and DSCO+^+ up to 500 GHz, equivalent to better than 60 m/s in terms of equivalent radial velocity. The present work illustrates the importance of using different laboratory techniques to spectroscopically characterise a protonated species at high frequency, and how a similar approach can be adopted when dealing with reactive species.Comment: 7 pages, 4 figures. Accepted for publication in Astronomy and Astrophysic

    A Fresh Catch of Massive Binaries in the Cygnus OB2 Association

    Full text link
    Massive binary stars may constitute a substantial fraction of progenitors to supernovae and gamma-ray bursts, and the distribution of their orbital characteristics holds clues to the formation process of massive stars. As a contribution to securing statistics on OB-type binaries, we report the discovery and orbital parameters for five new systems as part of the Cygnus OB2 Radial Velocity Survey. Four of the new systems (MT070, MT174, MT267, and MT734 (a.k.a. VI Cygni #11) are single-lined spectroscopic binaries while one (MT103) is a double-lined system (B1V+B2V). MT070 is noteworthy as the longest period system yet measured in Cyg OB2, with P=6.2 yr. The other four systems have periods ranging between 4 and 73 days. MT174 is noteworthy for having a probable mass ratio q<0.1, making it a candidate progenitor to a low-mass X-ray binary. These measurements bring the total number of massive binaries in Cyg OB2 to 25, the most currently known in any single cluster or association.Comment: Accepted for publication in the Astrophysical Journa

    Singing strategies are linked to perch use on foraging territories in heart-nosed bats

    Get PDF
    Acoustic communication allows animals to coordinate and optimize resource utilization in space. Cardioderma cor, the heart-nosed bat, is one of the few species of bats known to sing during nighttime foraging. Previous research found that heart-nosed bats react aggressively to song playback, supporting the territorial defense hypothesis of singing in this species. We further investigated the territorial defense hypothesis from an ecological standpoint, which predicts that singing should be associated with exclusive areas containing a resource, by tracking 14 individuals nightly during the dry seasons in Tanzania. We quantified the singing behavior of individuals at all perches used throughout the night. Using home range analysis tools, we quantified overall use, night ranges and singing ranges, as well as areas used in early and later time periods at night. Males sang back and forth from small (x over bar = 3.48 +/- 2.71 ha), largely exclusive areas that overlapped with overall night ranges used for gleaning prey. Individuals varied in singing effort; however, all sang significantly more as night progressed. Subsequently, areas used earlier at night and overall use areas were both larger than singing areas. Individuals varied in singing strategies. Some males sang for long periods in particular trees and had smaller core areas, while others moved frequently among singing trees. The most prolific singers used more perches overall. Our results support the hypothesis that acoustic communication repertoires evolved in support of stable foraging territory advertisement and defense in some bats

    Vibrational Satellites of C2_2S, C3_3S, and C4_4S: Microwave Spectral Taxonomy as a Stepping Stone to the Millimeter-Wave Band

    Full text link
    We present a microwave spectral taxonomy study of several hydrocarbon/CS2_2 discharge mixtures in which more than 60 distinct chemical species, their more abundant isotopic species, and/or their vibrationally excited states were detected using chirped-pulse and cavity Fourier-transform microwave spectroscopies. Taken together, in excess of 85 unique variants were detected, including several new isotopic species and more than 25 new vibrationally excited states of C2_2S, C3_3S, and C4_4S, which have been assigned on the basis of published vibration-rotation interaction constants for C3_3S, or newly calculated ones for C2_2S and C4_4S. On the basis of these precise, low-frequency measurements, several vibrationally exited states of C2_2S and C3_3S were subsequently identified in archival millimeter-wave data in the 253--280 GHz frequency range, ultimately providing highly accurate catalogs for astronomical searches. As part of this work, formation pathways of the two smaller carbon-sulfur chains were investigated using 13^{13}C isotopic spectroscopy, as was their vibrational excitation. The present study illustrates the utility of microwave spectral taxonomy as a tool for complex mixture analysis, and as a powerful and convenient `stepping stone' to higher frequency measurements in the millimeter and submillimeter bands.Comment: Accepted in PCC
    • …
    corecore