412 research outputs found

    Double Charged Higgs Bosons Production in eee^-e^---Collisions

    Get PDF
    In the framework of the models with Higgs triplets, double charged Higgs bosons production in the processes eeδL,Rγe^-e^-\to\delta ^{--}_{L,R}\gamma are considered.Comment: 7 pages, 2 figure

    Importance of Compton scattering to radiation spectra of isolated neutron stars

    Get PDF
    Model atmospheres of isolated neutron stars with low magnetic field are calculated with Compton scattering taking into account. Models with effective temperatures 1, 3 and 5 MK, with two values of surface gravity log(g)g = 13.9 and 14.3), and different chemical compositions are calculated. Radiation spectra computed with Compton scattering are softer than the computed with Thomson scattering at high energies (E > 5 keV) for hot (T_eff > 1 MK) atmospheres with hydrogen-helium composition. Compton scattering is more significant to hydrogen models with low surface gravity. The emergent spectra of the hottest (T_eff > 3 MK) model atmospheres can be described by diluted blackbody spectra with hardness factors ~ 1.6 - 1.9. Compton scattering is less important for models with solar abundance of heavy elements.Comment: Proceedings of the 363. WE-Heraeus Seminar on: Neutron Stars and Pulsars (Posters and contributed talks) Physikzentrum Bad Honnef, Germany, May.14-19, 2006, eds. W.Becker, H.H.Huang, MPE Report 291, pp.173-17

    Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel.

    Get PDF
    The design of atomic-scale microstructural traps to limit the diffusion of hydrogen is one key strategy in the development of hydrogen-embrittlement-resistant materials. In the case of bearing steels, an effective trapping mechanism may be the incorporation of finely dispersed V-Mo-Nb carbides in a ferrite matrix. First, we charged a ferritic steel with deuterium by means of electrolytic loading to achieve a high hydrogen concentration. We then immobilized it in the microstructure with a cryogenic transfer protocol before atom probe tomography (APT) analysis. Using APT, we show trapping of hydrogen within the core of these carbides with quantitative composition profiles. Furthermore, with this method the experiment can be feasibly replicated in any APT-equipped laboratory by using a simple cold chain

    New Source of CP violation in B physics ?

    Full text link
    In this talk we discuss how the down type left-right squark mixing in Supersymmetry can induce a new source of CP violation in the time dependent asymmtries in B --> phi K process. We use QCD improved factorization process to calculate the hadronic matrix element for the process and find the allowed parameter space for ρ\rho and ϕ\phi , the magnitude and phase of the down type LR(RL) squark mixing parameter δLR(RL)bs\delta^{bs}_{LR(RL)}. In the same allowed regin we calculate the expected CP asymmtries in the BϕKB \to \phi K^{*} process.Comment: 16 pages, Latex, 2 postscript figures, invited talk presented by N.G. Deshpande at the 9th Adriatic meeting, Dubrovnik, Croatia, 4-14 September, 2003. With updated reference

    Cosmic-ray strangelets in the Earth's atmosphere

    Full text link
    If strange quark matter is stable in small lumps, we expect to find such lumps, called ``strangelets'', on Earth due to a steady flux in cosmic rays. Following recent astrophysical models, we predict the strangelet flux at the top of the atmosphere, and trace the strangelets' behavior in atmospheric chemistry and circulation. We show that several strangelet species may have large abundances in the atmosphere; that they should respond favorably to laboratory-scale preconcentration techniques; and that they present promising targets for mass spectroscopy experiments.Comment: 28 pages, 4 figures, revtex

    Volume element structure and roton-maxon-phonon excitations in superfluid helium beyond the Gross-Pitaevskii approximation

    Full text link
    We propose a theory which deals with the structure and interactions of volume elements in liquid helium II. The approach consists of two nested models linked via parametric space. The short-wavelength part describes the interior structure of the fluid element using a non-perturbative approach based on the logarithmic wave equation; it suggests the Gaussian-like behaviour of the element's interior density and interparticle interaction potential. The long-wavelength part is the quantum many-body theory of such elements which deals with their dynamics and interactions. Our approach leads to a unified description of the phonon, maxon and roton excitations, and has noteworthy agreement with experiment: with one essential parameter to fit we reproduce at high accuracy not only the roton minimum but also the neighboring local maximum as well as the sound velocity and structure factor.Comment: 9 pages, 6 figure

    Meissner effect, Spin Meissner effect and charge expulsion in superconductors

    Full text link
    The Meissner effect and the Spin Meissner effect are the spontaneous generation of charge and spin current respectively near the surface of a metal making a transition to the superconducting state. The Meissner effect is well known but, I argue, not explained by the conventional theory, the Spin Meissner effect has yet to be detected. I propose that both effects take place in all superconductors, the first one in the presence of an applied magnetostatic field, the second one even in the absence of applied external fields. Both effects can be understood under the assumption that electrons expand their orbits and thereby lower their quantum kinetic energy in the transition to superconductivity. Associated with this process, the metal expels negative charge from the interior to the surface and an electric field is generated in the interior. The resulting charge current can be understood as arising from the magnetic Lorentz force on radially outgoing electrons, and the resulting spin current can be understood as arising from a spin Hall effect originating in the Rashba-like coupling of the electron magnetic moment to the internal electric field. The associated electrodynamics is qualitatively different from London electrodynamics, yet can be described by a small modification of the conventional London equations. The stability of the superconducting state and its macroscopic phase coherence hinge on the fact that the orbital angular momentum of the carriers of the spin current is found to be exactly /2\hbar/2, indicating a topological origin. The simplicity and universality of our theory argue for its validity, and the occurrence of superconductivity in many classes of materials can be understood within our theory.Comment: Submitted to SLAFES XX Proceeding

    How generic is cosmic string formation in SUSY GUTs

    Full text link
    We study cosmic string formation within supersymmetric grand unified theories. We consider gauge groups having a rank between 4 and 8. We examine all possible spontaneous symmetry breaking patterns from the GUT down to the standard model gauge group. Assuming standard hybrid inflation, we select all the models which can solve the GUT monopole problem, lead to baryogenesis after inflation and are consistent with proton lifetime measurements. We conclude that in all acceptable spontaneous symmetry breaking schemes, cosmic string formation is unavoidable. The strings which form at the end of inflation have a mass which is proportional to the inflationary scale. Sometimes, a second network of strings form at a lower scale. Models based on gauge groups which have rank greater than 6 can lead to more than one inflationary era; they all end by cosmic string formation.Comment: 31 pages, Latex, submitted to PR

    Comparison of soft and hard tissue ablation with sub-ps and ns pulse lasers

    Full text link
    Tissue ablation with ultrashort laser pulses offers several unique advantages. The nonlinear energy deposition is insensitive to tissue type, allowing this tool to be used for soft and hard tissue ablation. The localized energy deposition lead to precise ablation depth and minimal collateral damage. This paper reports on efforts to study and demonstrate tissue ablation using an ultrashort pulse laser. Ablation efficiency and extent of collateral damage for 0.3 ps and 1000 ps duration laser pulses are compared. Temperature measurements of the rear surface of a tooth section is also presented

    New Physics Contributions to The B -> phi K_S Decay

    Full text link
    Recent measurements of the time-dependent CP asymmetry of the B -> phi K_S decay give results whose central values differ from standard model expectations. It is shown how such data can be used to identify new physics contributions in a model-independent manner. In general, a sizeable new amplitude with nontrivial weak and strong phases would be required to explain current data. Improvement in the quality of data will allow one to form a more definite conclusion.Comment: 17 pages, 7 figures; some references added; analysis updated in light of recent BaBar data announced at Moriond conferenc
    corecore