5,843 research outputs found

    Physisorption of Nucleobases on Graphene

    Get PDF
    We report the results of our first-principles investigation on the interaction of the nucleobases adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U) with graphene, carried out within the density functional theory framework, with additional calculations utilizing Hartree--Fock plus second-order Moeller-Plesset perturbation theory. The calculated binding energy of the nucleobases shows the following hierarchy: G > T ~ C ~ A > U, with the equilibrium configuration being very similar for all five of them. Our results clearly demonstrate that the nucleobases exhibit significantly different interaction strengths when physisorbed on graphene. The stabilizing factor in the interaction between the base molecule and graphene sheet is dominated by the molecular polarizability that allows a weakly attractive dispersion force to be induced between them. The present study represents a significant step towards a first-principles understanding of how the base sequence of DNA can affect its interaction with carbon nanotubes, as observed experimentally.Comment: 7 pages, 3 figure

    Bogoliubov's Integrals of Motion in Quantum Cosmology and Gravity

    Full text link
    Quantum Cosmology and Gravity are formulated here as the primary and secondary quantizations of the energy constraints by analogy with the historical formulation of quantum field theory. New fact is that both the Universe and its matter are created from stable vacuum obtained by the Bogoliubov-type transformation just as it is in the theory of quantum superfluid liquid. Such the Quantum Gravity gives us possibility to explain topical problems of cosmology by the cosmological creation of universes and particles from vacuum.Comment: 12 pages, Proceedings of the II International Conference on Superintegrable Systems in Classical and Quantum Mechanics, Dubna, Russia, June 27 - July 1, 2005 (will be published in Yadernaya Fizika, 2006

    Bounds on New Physics from B -> V1 V2 Decays

    Full text link
    We consider the possibility that physics beyond the standard model contributes to the decays B -> V1 V2, where V1 and V2 are vector mesons. We show that a time-dependent angular analysis of B -> V1 V2 decays provides many tests for this new physics (NP). Furthermore, although one cannot solve for the NP parameters, we show that this angular analysis allows one to put bounds on these parameters. This can be useful in estimating the scale of NP, and can tell us whether any NP found directly at future high-energy colliders can be responsible for effects seen in B -> V1 V2 decays.Comment: 23 pages, plain LaTeX, 5 figures (included

    Bose-Einstein condensation of atomic gases in a harmonic oscillator confining potential trap

    Full text link
    We present a model which predicts the temperature of Bose-Einstein condensation in atomic alkali gases and find excellent agreement with recent experimental observations. A system of bosons confined by a harmonic oscillator potential is not characterized by a critical temperature in the same way as an identical system which is not confined. We discuss the problem of Bose-Einstein condensation in an isotropic harmonic oscillator potential analytically and numerically for a range of parameters of relevance to the study of low temperature gases of alkali metals.Comment: 11 pages latex with two postscript figure

    Short-Wave Excitations in Non-Local Gross-Pitaevskii Model

    Full text link
    It is shown, that a non-local form of the Gross-Pitaevskii equation allows to describe not only the long-wave excitations, but also the short-wave ones in the systems with Bose-condensate. At given parameter values, the excitation spectrum mimics the Landau spectrum of quasi-particle excitations in superfluid Helium with roton minimum. The excitation wavelength, at which the roton minimum exists, is close to the inter-particle interaction range. It is shown, that the existence domain of the spectrum with a roton minimum is reduced, if one accounts for an inter-particle attraction.Comment: 5 pages, 5 figures, UJP style; presented at Bogolyubov Kyiv Conference "Modern Problems of Theoretical and Mathematical Physics", September 15-18, 200

    Metformin Treatment Has No Beneficial Effect in a Dose-Response Survival Study in the SOD1G93A Mouse Model of ALS and Is Harmful in Female Mice

    Get PDF
    Background: Amyotrophic Lateral Sclerosis (ALS) is a devastating neurological disorder characterized by selective degeneration of upper and lower motor neurons. The primary triggers for motor neuron degeneration are unknown but inflammation, oxidative stress and mitochondrial defects have been identified as potential contributing factors. Metformin is an anti-type II diabetes drug that has anti-inflammatory and anti-oxidant properties, can bring about mitochondrial biogenesis and has been shown to attenuate pathology in mouse models of Huntington’s disease and multiple sclerosis. We therefore hypothesized that it might increase survival in the SOD1G93A murine model of ALS. Methodology/Principal Findings: Treatment of male and female SOD1G93A mice (n = 6persex)with2mg/mlmetformininthedrinkingwaterfrom35days,resultedinasignificantincreaseinmotorunitsurvival,asmeasuredbyinvivoelectrophysiologyat100days,inmaleEDLmuscles(24+/22vs.14+/22motorunits,p,0.005)andfemaleTAmuscles(21+/21vs.15+/22motorunits,P=0.0134).Wethereforecontinuedtotesttheeffectof0.5,2and5mg/mlmetformininthedrinkingwaterfrom35daysondiseaseonsetandprogression(identifiedbytwiceweeklydeterminationofweightandneurologicalscore)aswellassurvivalinmaleandfemaleSOD1G93Amice(n=6 per sex) with 2 mg/ml metformin in the drinking water from 35 days, resulted in a significant increase in motor unit survival, as measured by in vivo electrophysiology at 100 days, in male EDL muscles (24+/22 vs. 14+/22 motor units, p,0.005) and female TA muscles (21+/ 21 vs. 15+/22 motor units, P = 0.0134). We therefore continued to test the effect of 0.5, 2 and 5 mg/ml metformin in the drinking water from 35 days on disease onset and progression (identified by twice weekly determination of weight and neurological score) as well as survival in male and female SOD1G93A mice (n = 14 per sex). Results for all groups were compared using Kaplan-Meier time to event analyses. In this survival study, metformin was unable to reduce pathology at any dose and had an unexpected dose-dependent negative effect on the onset of neurological symptoms (P = 0.0236) and on disease progression (P = 0.0362) in female mice. Conclusions/Significance: This study suggests that metformin is a poor candidate for clinical trial in ALS patients and that the possibility of harmful effects of metformin in female ALS patients with type II diabetes should be investigated

    ’Team GB’ and London 2012: The Paradox of National and Global Identities

    Get PDF
    This article explores the problems associated with ’national identity’ in the UK and examines the tensions arising between the international and local dimensions of the games through examples of domestic (UK) and international (Brazil, Chicago) media coverage of the key debates relating to London’s period of preparation. The chapter proposes a conception of London 2012 as exemplar of an event poised to generate insights and experiences connected to a new politics of ’cosmopolitan’ identity; insights central to grasping the cultural politics of contemporary urban development-and the paradoxes of national identity in current discourses of Olympism. Properly speaking, cosmopolitanism suits those people who have no country, while internationalism should be the state of mind of those who love their country above all, who seek to draw to it the friendship of foreigners by professing for the countries of those foreigners an intelligent and enlightened sympathy. © 2010 Taylor & Francis

    Quantum Equilibrium and the Origin of Absolute Uncertainty

    Full text link
    The quantum formalism is a ``measurement'' formalism--a phenomenological formalism describing certain macroscopic regularities. We argue that it can be regarded, and best be understood, as arising from Bohmian mechanics, which is what emerges from Schr\"odinger's equation for a system of particles when we merely insist that ``particles'' means particles. While distinctly non-Newtonian, Bohmian mechanics is a fully deterministic theory of particles in motion, a motion choreographed by the wave function. We find that a Bohmian universe, though deterministic, evolves in such a manner that an {\it appearance} of randomness emerges, precisely as described by the quantum formalism and given, for example, by ``\rho=|\psis|^2.'' A crucial ingredient in our analysis of the origin of this randomness is the notion of the effective wave function of a subsystem, a notion of interest in its own right and of relevance to any discussion of quantum theory. When the quantum formalism is regarded as arising in this way, the paradoxes and perplexities so often associated with (nonrelativistic) quantum theory simply evaporate.Comment: 75 pages. This paper was published a long time ago, but was never archived. We do so now because it is basic for our recent article quant-ph/0308038, which can in fact be regarded as an appendix of the earlier on

    Magnetic Field-Induced Condensation of Triplons in Han Purple Pigment BaCuSi2_2O6_6

    Full text link
    Besides being an ancient pigment, BaCuSi2_2O6_6 is a quasi-2D magnetic insulator with a gapped spin dimer ground state. The application of strong magnetic fields closes this gap creating a gas of bosonic spin triplet excitations called triplons. The topology of the spin lattice makes BaCuSi2_2O6_6 an ideal candidate for studying the Bose-Einstein condensation of triplons as a function of the external magnetic field, which acts as a chemical potential. In agreement with quantum Monte Carlo numerical simulations, we observe a distinct lambda-anomaly in the specific heat together with a maximum in the magnetic susceptibility upon cooling down to liquid Helium temperatures.Comment: published on August 20, 200

    New Physics in CP Asymmetries and Rare B Decays

    Get PDF
    We review and update the effects of physics beyond the standard model on CP asymmetries in B decays. These asymmetries can be significantly altered if there are important new-physics contributions to \bqbqbar mixing. This same new physics will therefore also contribute to rare, flavor-changing B decays. Through a study of such decays, we show that it is possible to partially distinguish the different models of new physics.Comment: 42 pages, plain TeX (macros included), 1 figure (included). A few sentences added, references updated. Present manuscript is now identical to the version accepted for publication in Phys. Rev.
    • …
    corecore