1,349 research outputs found
High-speed data transfer with FPGAs and QSFP+ modules
We present test results and characterization of a data transmission system
based on a last generation FPGA and a commercial QSFP+ (Quad Small Form
Pluggable +) module. QSFP+ standard defines a hot-pluggable transceiver
available in copper or optical cable assemblies for an aggregated bandwidth of
up to 40 Gbps. We implemented a complete testbench based on a commercial
development card mounting an Altera Stratix IV FPGA with 24 serial transceivers
at 8.5 Gbps, together with a custom mezzanine hosting three QSFP+ modules. We
present test results and signal integrity measurements up to an aggregated
bandwidth of 12 Gbps.Comment: 5 pages, 3 figures, Published on JINST Journal of Instrumentation
proceedings of Topical Workshop on Electronics for Particle Physics 2010,
20-24 September 2010, Aachen, Germany(R Ammendola et al 2010 JINST 5 C12019
Progress and status of APEmille
We report on the progress and status of the APEmille project: a SIMD parallel
computer with a peak performance in the TeraFlops range which is now in an
advanced development phase. We discuss the hardware and software architecture,
and present some performance estimates for Lattice Gauge Theory (LGT)
applications.Comment: Talk presented at LATTICE97, 3 pages, Late
APEnet+: high bandwidth 3D torus direct network for petaflops scale commodity clusters
We describe herein the APElink+ board, a PCIe interconnect adapter featuring
the latest advances in wire speed and interface technology plus hardware
support for a RDMA programming model and experimental acceleration of GPU
networking; this design allows us to build a low latency, high bandwidth PC
cluster, the APEnet+ network, the new generation of our cost-effective,
tens-of-thousands-scalable cluster network architecture. Some test results and
characterization of data transmission of a complete testbench, based on a
commercial development card mounting an Altera FPGA, are provided.Comment: 6 pages, 7 figures, proceeding of CHEP 2010, Taiwan, October 18-2
NaNet: a Low-Latency, Real-Time, Multi-Standard Network Interface Card with GPUDirect Features
While the GPGPU paradigm is widely recognized as an effective approach to
high performance computing, its adoption in low-latency, real-time systems is
still in its early stages.
Although GPUs typically show deterministic behaviour in terms of latency in
executing computational kernels as soon as data is available in their internal
memories, assessment of real-time features of a standard GPGPU system needs
careful characterization of all subsystems along data stream path.
The networking subsystem results in being the most critical one in terms of
absolute value and fluctuations of its response latency.
Our envisioned solution to this issue is NaNet, a FPGA-based PCIe Network
Interface Card (NIC) design featuring a configurable and extensible set of
network channels with direct access through GPUDirect to NVIDIA Fermi/Kepler
GPU memories.
NaNet design currently supports both standard - GbE (1000BASE-T) and 10GbE
(10Base-R) - and custom - 34~Gbps APElink and 2.5~Gbps deterministic latency
KM3link - channels, but its modularity allows for a straightforward inclusion
of other link technologies.
To avoid host OS intervention on data stream and remove a possible source of
jitter, the design includes a network/transport layer offload module with
cycle-accurate, upper-bound latency, supporting UDP, KM3link Time Division
Multiplexing and APElink protocols.
After NaNet architecture description and its latency/bandwidth
characterization for all supported links, two real world use cases will be
presented: the GPU-based low level trigger for the RICH detector in the NA62
experiment at CERN and the on-/off-shore data link for KM3 underwater neutrino
telescope
GPU-based Real-time Triggering in the NA62 Experiment
Over the last few years the GPGPU (General-Purpose computing on Graphics
Processing Units) paradigm represented a remarkable development in the world of
computing. Computing for High-Energy Physics is no exception: several works
have demonstrated the effectiveness of the integration of GPU-based systems in
high level trigger of different experiments. On the other hand the use of GPUs
in the low level trigger systems, characterized by stringent real-time
constraints, such as tight time budget and high throughput, poses several
challenges. In this paper we focus on the low level trigger in the CERN NA62
experiment, investigating the use of real-time computing on GPUs in this
synchronous system. Our approach aimed at harvesting the GPU computing power to
build in real-time refined physics-related trigger primitives for the RICH
detector, as the the knowledge of Cerenkov rings parameters allows to build
stringent conditions for data selection at trigger level. Latencies of all
components of the trigger chain have been analyzed, pointing out that
networking is the most critical one. To keep the latency of data transfer task
under control, we devised NaNet, an FPGA-based PCIe Network Interface Card
(NIC) with GPUDirect capabilities. For the processing task, we developed
specific multiple ring trigger algorithms to leverage the parallel architecture
of GPUs and increase the processing throughput to keep up with the high event
rate. Results obtained during the first months of 2016 NA62 run are presented
and discussed
NEMO: A Project for a km Underwater Detector for Astrophysical Neutrinos in the Mediterranean Sea
The status of the project is described: the activity on long term
characterization of water optical and oceanographic parameters at the Capo
Passero site candidate for the Mediterranean km neutrino telescope; the
feasibility study; the physics performances and underwater technology for the
km; the activity on NEMO Phase 1, a technological demonstrator that has
been deployed at 2000 m depth 25 km offshore Catania; the realization of an
underwater infrastructure at 3500 m depth at the candidate site (NEMO Phase 2).Comment: Proceeding of ISCRA 2006, Erice 20-27 June 200
Measurement of the atmospheric muon flux with the NEMO Phase-1 detector
The NEMO Collaboration installed and operated an underwater detector
including prototypes of the critical elements of a possible underwater km3
neutrino telescope: a four-floor tower (called Mini-Tower) and a Junction Box.
The detector was developed to test some of the main systems of the km3
detector, including the data transmission, the power distribution, the timing
calibration and the acoustic positioning systems as well as to verify the
capabilities of a single tridimensional detection structure to reconstruct muon
tracks. We present results of the analysis of the data collected with the NEMO
Mini-Tower. The position of photomultiplier tubes (PMTs) is determined through
the acoustic position system. Signals detected with PMTs are used to
reconstruct the tracks of atmospheric muons. The angular distribution of
atmospheric muons was measured and results compared with Monte Carlo
simulations.Comment: Astrop. Phys., accepte
Prospects for at CERN in NA62
The NA62 experiment will begin taking data in 2015. Its primary purpose is a
10% measurement of the branching ratio of the ultrarare kaon decay , using the decay in flight of kaons in an unseparated
beam with momentum 75 GeV/c.The detector and analysis technique are described
here.Comment: 8 pages for proceedings of 50 Years of CP
Clinical Implication of Targeting of Cancer Stem Cells
The existence of cancer stem cells (CSCs) is receiving increasing interest particularly due to its potential ability to enter clinical routine. Rapid advances in the CSC field have provided evidence for the development of more reliable anticancer therapies in the future. CSCs typically only constitute a small fraction of the total tumor burden; however, they harbor self-renewal capacity and appear to be relatively resistant to conventional therapies. Recent therapeutic approaches aim to eliminate or differentiate CSCs or to disrupt the niches in which they reside. Better understanding of the biological characteristics of CSCs as well as improved preclinical and clinical trials targeting CSCs may revolutionize the treatment of many cancers. Copyright (c) 2012 S. Karger AG, Base
Inertial bioluminescence rhythms at the Capo Passero (KM3NeT-Italia) site, Central Mediterranean Sea
In the deep sea, the sense of time is dependent on geophysical fluctuations, such as internal tides and atmospheric-related inertial currents, rather than day-night rhythms. Deep-sea neutrino telescopes instrumented with light detecting Photo-Multiplier Tubes (PMT) can be used to describe the synchronization of bioluminescent activity of abyssopelagic organisms with hydrodynamic cycles. PMT readings at 8 different depths (from 3069 to 3349 m) of the NEMO Phase 2 prototype, deployed offshore Capo Passero (Sicily) at the KM3NeT-Italia site, were used to characterize rhythmic bioluminescence patterns in June 2013, in response to water mass movements. We found a significant (p < 0.05) 20.5 h periodicity in the bioluminescence signal, corresponding to inertial fluctuations. Waveform and Fourier analyses of PMT data and tower orientation were carried out to identify phases (i.e. the timing of peaks) by subdividing time series on the length of detected inertial periodicity. A phase overlap between rhythms and cycles suggests a mechanical stimulation of bioluminescence, as organisms carried by currents collide with the telescope infrastructure, resulting in the emission of light. A bathymetric shift in PMT phases indicated that organisms travelled in discontinuous deep-sea undular vortices consisting of chains of inertially pulsating mesoscale cyclones/anticyclones, which to date remain poorly known
- …
