38 research outputs found

    LiteBIRD science goals and forecasts: a full-sky measurement of gravitational lensing of the CMB

    No full text
    We explore the capability of measuring lensing signals in LiteBIRD full-sky polarization maps. With a 30 arcmin beam width and an impressively low polarization noise of 2.16 μK-arcmin,LiteBIRD will be able to measure the full-sky polarization of the cosmic microwave background (CMB) very precisely. This unique sensitivity also enables the reconstruction of a nearly full-sky lensing map using only polarization data, even considering its limited capability to capture small-scale CMB anisotropies. In this paper, we investigate the ability to construct a full-sky lensing measurement in the presence of Galactic foregrounds, finding that several possible biases from Galactic foregrounds should be negligible after component separation by harmonic-space internal linear combination. We find that the signal-to-noise ratio of the lensing is approximately 40 using only polarization data measured over 80% of the sky. This achievement is comparable to Planck's recent lensing measurement with both temperature and polarization and represents a four-fold improvement over Planck's polarization-only lensing measurement. The LiteBIRD lensing map will complement the Planck lensing map and provide several opportunities for cross-correlation science, especially in the northern hemisphere.ISAS/JAXA for Pre-Phase A2 studiesJAXA research and development directorateH2020-MSCA-RISE20205.3 Q1 JCR 20230.932 Q2 SJR 2023No data IDR 2023UE

    LiteBIRD science goals and forecasts: improving sensitivity to inflationary gravitational waves with multitracer delensing

    No full text
    We estimate the efficiency of mitigating the lensing B-mode polarization, the so-called delensing, for the LiteBIRD experiment with multiple external data sets of lensing-mass tracers. The current best bound on the tensor-to-scalar ratio, r, is limited by lensing rather than Galactic foregrounds. Delensing will be a critical step to improve sensitivity to r as measurements of r become more and more limited by lensing. In this paper, we extend the analysis of the recent LiteBIRD forecast paper to include multiple mass tracers, i.e., the CMB lensing maps from LiteBIRD and CMB-S4-like experiment, cosmic infrared background, and galaxy number density from Euclid- and LSST-like survey. We find that multi-tracer delensing will further improve the constraint on r by about 20%. In LiteBIRD, the residual Galactic foregrounds also significantly contribute to uncertainties of the B-modes, and delensing becomes more important if the residual foregrounds are further reduced by an improved component separation method.JP15H05891JP17H01115JP17H011255.3 Q1 JCR 20230.932 Q2 SJR 2023No data IDR 2023UE

    The Simons Observatory: impact of bandpass, polarization angle and calibration uncertainties on small-scale power spectrum analysis

    No full text
    International audienceWe study the effects due to mismatches in passbands, polarization angles, and temperature and polarization calibrations in the context of the upcoming cosmic microwave background experiment Simons Observatory (SO). Using the SO multi-frequency likelihood, we estimate the bias and the degradation of constraining power in cosmological and astrophysical foreground parameters assuming different levels of knowledge of the instrumental effects. We find that incorrect but reasonable assumptions on the values of all the systematics examined here can have important effects in cosmological analyses, hence requiring marginalization approaches at likelihood level. When doing so, we find that the most relevant effect is due to bandpass shifts. When marginalizing over them, the posteriors of parameters describing astrophysical microwave foregrounds (such as radio point sources or dust) get degraded, while cosmological parameters constraints are not significantly affected. Marginalization over polarization angles with up to 0.25^\circ uncertainty causes an irrelevant bias 0.05σ\lesssim 0.05 \sigma in all parameters. Marginalization over calibration factors in polarization broadens the constraints on the effective number of relativistic degrees of freedom NeffN_\mathrm{eff} by a factor 1.2, interpreted here as a proxy parameter for non standard model physics targeted by high-resolution CMB measurements

    The Simons Observatory: impact of bandpass, polarization angle and calibration uncertainties on small-scale power spectrum analysis

    No full text
    International audienceWe study the effects due to mismatches in passbands, polarization angles, and temperature and polarization calibrations in the context of the upcoming cosmic microwave background experiment Simons Observatory (SO). Using the SO multi-frequency likelihood, we estimate the bias and the degradation of constraining power in cosmological and astrophysical foreground parameters assuming different levels of knowledge of the instrumental effects. We find that incorrect but reasonable assumptions on the values of all the systematics examined here can have important effects in cosmological analyses, hence requiring marginalization approaches at likelihood level. When doing so, we find that the most relevant effect is due to bandpass shifts. When marginalizing over them, the posteriors of parameters describing astrophysical microwave foregrounds (such as radio point sources or dust) get degraded, while cosmological parameters constraints are not significantly affected. Marginalization over polarization angles with up to 0.25^\circ uncertainty causes an irrelevant bias 0.05σ\lesssim 0.05 \sigma in all parameters. Marginalization over calibration factors in polarization broadens the constraints on the effective number of relativistic degrees of freedom NeffN_\mathrm{eff} by a factor 1.2, interpreted here as a proxy parameter for non standard model physics targeted by high-resolution CMB measurements

    The Simons Observatory: impact of bandpass, polarization angle and calibration uncertainties on small-scale power spectrum analysis

    No full text
    International audienceWe study the effects due to mismatches in passbands, polarization angles, and temperature and polarization calibrations in the context of the upcoming cosmic microwave background experiment Simons Observatory (SO). Using the SO multi-frequency likelihood, we estimate the bias and the degradation of constraining power in cosmological and astrophysical foreground parameters assuming different levels of knowledge of the instrumental effects. We find that incorrect but reasonable assumptions on the values of all the systematics examined here can have important effects in cosmological analyses, hence requiring marginalization approaches at likelihood level. When doing so, we find that the most relevant effect is due to bandpass shifts. When marginalizing over them, the posteriors of parameters describing astrophysical microwave foregrounds (such as radio point sources or dust) get degraded, while cosmological parameters constraints are not significantly affected. Marginalization over polarization angles with up to 0.25^\circ uncertainty causes an irrelevant bias 0.05σ\lesssim 0.05 \sigma in all parameters. Marginalization over calibration factors in polarization broadens the constraints on the effective number of relativistic degrees of freedom NeffN_\mathrm{eff} by a factor 1.2, interpreted here as a proxy parameter for non standard model physics targeted by high-resolution CMB measurements

    The Simons Observatory: impact of bandpass, polarization angle and calibration uncertainties on small-scale power spectrum analysis

    No full text
    International audienceWe study the effects due to mismatches in passbands, polarization angles, and temperature and polarization calibrations in the context of the upcoming cosmic microwave background experiment Simons Observatory (SO). Using the SO multi-frequency likelihood, we estimate the bias and the degradation of constraining power in cosmological and astrophysical foreground parameters assuming different levels of knowledge of the instrumental effects. We find that incorrect but reasonable assumptions on the values of all the systematics examined here can have important effects in cosmological analyses, hence requiring marginalization approaches at likelihood level. When doing so, we find that the most relevant effect is due to bandpass shifts. When marginalizing over them, the posteriors of parameters describing astrophysical microwave foregrounds (such as radio point sources or dust) get degraded, while cosmological parameters constraints are not significantly affected. Marginalization over polarization angles with up to 0.25^\circ uncertainty causes an irrelevant bias 0.05σ\lesssim 0.05 \sigma in all parameters. Marginalization over calibration factors in polarization broadens the constraints on the effective number of relativistic degrees of freedom NeffN_\mathrm{eff} by a factor 1.2, interpreted here as a proxy parameter for non standard model physics targeted by high-resolution CMB measurements

    LiteBIRD Science Goals and Forecasts: Primordial Magnetic Fields

    No full text
    International audienceWe present detailed forecasts for the constraints on primordial magnetic fields (PMFs) that will be obtained with the LiteBIRD satellite. The constraints are driven by the effects of PMFs on the CMB anisotropies: the gravitational effects of magnetically-induced perturbations; the effects on the thermal and ionization history of the Universe; the Faraday rotation imprint on the CMB polarization; and the non-Gaussianities induced in polarization anisotropies. LiteBIRD represents a sensitive probe for PMFs and by exploiting all the physical effects, it will be able to improve the current limit coming from Planck. In particular, thanks to its accurate BB-mode polarization measurement, LiteBIRD will improve the constraints on infrared configurations for the gravitational effect, giving B1MpcnB=2.9<0.8B_{\rm 1\,Mpc}^{n_{\rm B} =-2.9} < 0.8 nG at 95% C.L., potentially opening the possibility to detect nanogauss fields with high significance. We also observe a significant improvement in the limits when marginalized over the spectral index, B1Mpcmarg<2.2B_{1\,{\rm Mpc}}^{\rm marg}< 2.2 nG at 95% C.L. From the thermal history effect, which relies mainly on EE-mode polarization data, we obtain a significant improvement for all PMF configurations, with the marginalized case, B2marg<0.50\sqrt{\langle B^2\rangle}^{\rm marg}<0.50 nG at 95% C.L. Faraday rotation constraints will take advantage of the wide frequency coverage of LiteBIRD and the high sensitivity in BB modes, improving the limits by orders of magnitude with respect to current results, B1MpcnB=2.9<3.2B_{1\,{\rm Mpc}}^{n_{\rm B} =-2.9} < 3.2 nG at 95% C.L. Finally, non-Gaussianities of the BB-mode polarization can probe PMFs at the level of 1 nG, again significantly improving the current bounds from Planck. Altogether our forecasts represent a broad collection of complementary probes, providing conservative limits on PMF characteristics that will be achieved with LiteBIRD

    LiteBIRD Science Goals and Forecasts: Primordial Magnetic Fields

    No full text
    International audienceWe present detailed forecasts for the constraints on primordial magnetic fields (PMFs) that will be obtained with the LiteBIRD satellite. The constraints are driven by the effects of PMFs on the CMB anisotropies: the gravitational effects of magnetically-induced perturbations; the effects on the thermal and ionization history of the Universe; the Faraday rotation imprint on the CMB polarization; and the non-Gaussianities induced in polarization anisotropies. LiteBIRD represents a sensitive probe for PMFs and by exploiting all the physical effects, it will be able to improve the current limit coming from Planck. In particular, thanks to its accurate BB-mode polarization measurement, LiteBIRD will improve the constraints on infrared configurations for the gravitational effect, giving B1MpcnB=2.9<0.8B_{\rm 1\,Mpc}^{n_{\rm B} =-2.9} < 0.8 nG at 95% C.L., potentially opening the possibility to detect nanogauss fields with high significance. We also observe a significant improvement in the limits when marginalized over the spectral index, B1Mpcmarg<2.2B_{1\,{\rm Mpc}}^{\rm marg}< 2.2 nG at 95% C.L. From the thermal history effect, which relies mainly on EE-mode polarization data, we obtain a significant improvement for all PMF configurations, with the marginalized case, B2marg<0.50\sqrt{\langle B^2\rangle}^{\rm marg}<0.50 nG at 95% C.L. Faraday rotation constraints will take advantage of the wide frequency coverage of LiteBIRD and the high sensitivity in BB modes, improving the limits by orders of magnitude with respect to current results, B1MpcnB=2.9<3.2B_{1\,{\rm Mpc}}^{n_{\rm B} =-2.9} < 3.2 nG at 95% C.L. Finally, non-Gaussianities of the BB-mode polarization can probe PMFs at the level of 1 nG, again significantly improving the current bounds from Planck. Altogether our forecasts represent a broad collection of complementary probes, providing conservative limits on PMF characteristics that will be achieved with LiteBIRD
    corecore