107 research outputs found

    The role of ACTH and glucocorticoids in nonenzymatic fibrinolysis during immobilization stress in animals

    Get PDF
    The role of the altered hormonal status of an organism in the activation of the anticoagulative system during stress is investigated. The 30 minute immobilization stress was shown to raise significantly the nonenzymatic fibrinolytic activity of blood in rats. Combined with adrenocorticotropin (ACTH) the effect is still greater. Intravenous administration of 0.2 m1 0.01 percent solution of protamine sulphate prevented the nonenzymatic fibrinolysis induced by the stress. Administration of ACTH after protomine sulphate again raised the fibrinolysis. This suggests that ACTH stimulates the release of heparin

    The effects of adrenalectomy and corticsteroid injection on the fibrinolytic activity of complex heparin compounds in the blood during immobilization

    Get PDF
    Total non-enzymatic fibrinolytic activity in the blood of rats increased three times in response to stress caused by 30 minute immobilization, and the activity of epinephrine-heparin complex increased nine times. In adrenalectomized animals, which showed a weak response to the same stress, intraperitoneal injection of hydrocortisone 30 minutes prior to immobilization normalized the response. Obtained results indicate that adrenalectomy leads to sharp reduction of heparin complexing with thromogenic proteins and epinephrine, while substitution therapy with hydrocortisone restores anticoagulation system function

    Effect and Safety of Meropenem\u2013Vaborbactam versus Best-Available Therapy in Patients with Carbapenem-Resistant Enterobacteriaceae Infections: The TANGO II Randomized Clinical Trial

    Get PDF
    Introduction: Treatment options for carbapenem-resistant Enterobacteriaceae (CRE) infections are limited and CRE infections remain associated with high clinical failure and mortality rates, particularly in vulnerable patient populations. A Phase 3, multinational, open-label, randomized controlled trial (TANGO II) was conducted from 2014 to 2017 to evaluate the efficacy/safety of meropenem\u2013vaborbactam monotherapy versus best available therapy (BAT) for CRE. Methods: A total of 77 patients with confirmed/suspected CRE infection (bacteremia, hospital-acquired/ventilator-associated bacterial pneumonia, complicated intra-abdominal infection, complicated urinary tract infection/acute pyelonephritis) were randomized, and 47 with confirmed CRE infection formed the primary analysis population (microbiologic-CRE-modified intent-to-treat, mCRE-MITT). Eligible patients were randomized 2:1 to meropenem\u2013vaborbactam (2 g/2 g over 3 h, q8h for 7\u201314 days) or BAT (mono/combination therapy with polymyxins, carbapenems, aminoglycosides, tigecycline; or ceftazidime-avibactam alone). Efficacy endpoints included clinical cure, Day-28 all-cause mortality, microbiologic cure, and overall success (clinical cure + microbiologic eradication). Safety endpoints included adverse events (AEs) and laboratory findings. Results: Within the mCRE-MITT population, cure rates were 65.6% (21/32) and 33.3% (5/15) [95% confidence interval (CI) of difference, 3.3% to 61.3%; P = 0.03)] at End of Treatment and 59.4% (19/32) and 26.7% (4/15) (95% CI of difference, 4.6% to 60.8%; P = 0.02) at Test of Cure;.Day-28 all-cause mortality was 15.6% (5/32) and 33.3% (5/15) (95% CI of difference, 12 44.7% to 9.3%) for meropenem\u2013vaborbactam versus BAT, respectively. Treatment-related AEs and renal-related AEs were 24.0% (12/50) and 4.0% (2/50) for meropenem\u2013vaborbactam versus 44.0% (11/25) and 24.0% (6/25) for BAT. Exploratory risk\u2013benefit analyses of composite clinical failure or nephrotoxicity favored meropenem\u2013vaborbactam versus BAT (31.3% [10/32] versus 80.0% [12/15]; 95% CI of difference, 12 74.6% to 12 22.9%; P < 0.001). Conclusions: Monotherapy with meropenem\u2013vaborbactam for CRE infection was associated with increased clinical cure, decreased mortality, and reduced nephrotoxicity compared with BAT. Clinical Trials Registration: NCT02168946. Funding: The Medicines Company

    MexEF-OprN Efflux Pump Exports the Pseudomonas Quinolone Signal (PQS) Precursor HHQ (4-hydroxy-2-heptylquinoline)

    Get PDF
    Bacterial cells have evolved the capacity to communicate between each other via small diffusible chemical signals termed autoinducers. Pseudomonas aeruginosa is an opportunistic pathogen involved, among others, in cystic fibrosis complications. Virulence of P. aeruginosa relies on its ability to produce a number of autoinducers, including 4-hydroxy-2-alkylquinolines (HAQ). In a cell density-dependent manner, accumulated signals induce the expression of multiple targets, especially virulence factors. This phenomenon, called quorum sensing, promotes bacterial capacity to cause disease. Furthermore, P. aeruginosa possesses many multidrug efflux pumps conferring adaptive resistance to antibiotics. Activity of some of these efflux pumps also influences quorum sensing. The present study demonstrates that the MexEF-OprN efflux pump modulates quorum sensing through secretion of a signalling molecule belonging to the HAQ family. Moreover, activation of MexEF-OprN reduces virulence factor expression and swarming motility. Since MexEF-OprN can be activated in infected hosts even in the absence of antibiotic selective pressure, it could promote establishment of chronic infections in the lungs of people suffering from cystic fibrosis, thus diminishing the immune response to virulence factors. Therapeutic drugs that affect multidrug efflux pumps and HAQ-mediated quorum sensing would be valuable tools to shut down bacterial virulence

    A Requirement of TolC and MDR Efflux Pumps for Acid Adaptation and GadAB Induction in Escherichia coli

    Get PDF
    BACKGROUND: The TolC outer membrane channel is a key component of several multidrug resistance (MDR) efflux pumps driven by H(+) transport in Escherichia coli. While tolC expression is under the regulation of the EvgA-Gad acid resistance regulon, the role of TolC in growth at low pH and extreme-acid survival is unknown. METHODS AND PRINCIPAL FINDINGS: TolC was required for extreme-acid survival (pH 2) of strain W3110 grown aerobically to stationary phase. A tolC deletion decreased extreme-acid survival (acid resistance) of aerated pH 7.0-grown cells by 10(5)-fold and of pH 5.5-grown cells by 10-fold. The requirement was specific for acid resistance since a tolC defect had no effect on aerobic survival in extreme base (pH 10). TolC was required for expression of glutamate decarboxylase (GadA, GadB), a key component of glutamate-dependent acid resistance (Gad). TolC was also required for maximal exponential growth of E. coli K-12 W3110, in LBK medium buffered at pH 4.5-6.0, but not at pH 6.5-8.5. The TolC growth requirement in moderate acid was independent of Gad. TolC-associated pump components EmrB and MdtB contributed to survival in extreme acid (pH 2), but were not required for growth at pH 5. A mutant lacking the known TolC-associated efflux pumps (acrB, acrD, emrB, emrY, macB, mdtC, mdtF, acrEF) showed no growth defect at acidic pH and a relatively small decrease in extreme-acid survival when pre-grown at pH 5.5. CONCLUSIONS: TolC and proton-driven MDR efflux pump components EmrB and MdtB contribute to E. coli survival in extreme acid and TolC is required for maximal growth rates below pH 6.5. The TolC enhancement of extreme-acid survival includes Gad induction, but TolC-dependent growth rates below pH 6.5 do not involve Gad. That MDR resistance can enhance growth and survival in acid is an important consideration for enteric organisms passing through the acidic stomach

    Antibiotic Stress, Genetic Response and Altered Permeability of E. coli

    Get PDF
    BACKGROUND: Membrane permeability is the first step involved in resistance of bacteria to an antibiotic. The number and activity of efflux pumps and outer membrane proteins that constitute porins play major roles in the definition of intrinsic resistance in Gram-negative bacteria that is altered under antibiotic exposure. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe the genetic regulation of porins and efflux pumps of Escherichia coli during prolonged exposure to increasing concentrations of tetracycline and demonstrate, with the aid of quantitative real-time reverse transcriptase-polymerase chain reaction methodology and western blot detection, the sequence order of genetic expression of regulatory genes, their relationship to each other, and the ensuing increased activity of genes that code for transporter proteins of efflux pumps and down-regulation of porin expression. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that, in addition to the transcriptional regulation of genes coding for membrane proteins, the post-translational regulation of proteins involved in the permeability of Gram-negative bacteria also plays a major role in the physiological adaptation to antibiotic exposure. A model is presented that summarizes events during the physiological adaptation of E. coli to tetracycline exposure

    The Mycobacterium tuberculosis Drugome and Its Polypharmacological Implications

    Get PDF
    We report a computational approach that integrates structural bioinformatics, molecular modelling and systems biology to construct a drug-target network on a structural proteome-wide scale. The approach has been applied to the genome of Mycobacterium tuberculosis (M.tb), the causative agent of one of today's most widely spread infectious diseases. The resulting drug-target interaction network for all structurally characterized approved drugs bound to putative M.tb receptors, we refer to as the ‘TB-drugome’. The TB-drugome reveals that approximately one-third of the drugs examined have the potential to be repositioned to treat tuberculosis and that many currently unexploited M.tb receptors may be chemically druggable and could serve as novel anti-tubercular targets. Furthermore, a detailed analysis of the TB-drugome has shed new light on the controversial issues surrounding drug-target networks [1]–[3]. Indeed, our results support the idea that drug-target networks are inherently modular, and further that any observed randomness is mainly caused by biased target coverage. The TB-drugome (http://funsite.sdsc.edu/drugome/TB) has the potential to be a valuable resource in the development of safe and efficient anti-tubercular drugs. More generally the methodology may be applied to other pathogens of interest with results improving as more of their structural proteomes are determined through the continued efforts of structural biology/genomics

    Exploiting bacterial DNA gyrase as a drug target: current state and perspectives

    Get PDF
    DNA gyrase is a type II topoisomerase that can introduce negative supercoils into DNA at the expense of ATP hydrolysis. It is essential in all bacteria but absent from higher eukaryotes, making it an attractive target for antibacterials. The fluoroquinolones are examples of very successful gyrase-targeted drugs, but the rise in bacterial resistance to these agents means that we not only need to seek new compounds, but also new modes of inhibition of this enzyme. We review known gyrase-specific drugs and toxins and assess the prospects for developing new antibacterials targeted to this enzyme

    Multidrug resistant Acinetobacter baumannii--the role of AdeABC (RND family) efflux pump in resistance to antibiotics.

    Full text link
    corecore