620 research outputs found

    Levantamiento gravimétrico de Chile

    Get PDF

    Phenomenological Lambda-Nuclear Interactions

    Full text link
    Variational Monte Carlo calculations for Λ4H{_{\Lambda}^4}H (ground and excited states) and Λ5He{_{\Lambda}^5}He are performed to decipher information on Λ{\Lambda}-nuclear interactions. Appropriate operatorial nuclear and Λ{\Lambda}-nuclear correlations have been incorporated to minimize the expectation values of the energies. We use the Argonne υ18\upsilon_{18} two-body NN along with the Urbana IX three-body NNN interactions. The study demonstrates that a large part of the splitting energy in Λ4H{_{\Lambda}^4}H (0+1+0^+-1^+) is due to the three-body Λ{\Lambda} NN forces. Λ17O_{\Lambda}^{17}O hypernucleus is analyzed using the {\it s}-shell results. Λ\Lambda binding to nuclear matter is calculated within the variational framework using the Fermi-Hypernetted-Chain technique. There is a need to correctly incorporate the three-body Λ{\Lambda} NN correlations for Λ\Lambda binding to nuclear matter.Comment: 18 pages (TeX), 2 figure

    Four-Body Bound State Calculations in Three-Dimensional Approach

    Get PDF
    The four-body bound state with two-body interactions is formulated in Three-Dimensional approach, a recently developed momentum space representation which greatly simplifies the numerical calculations of few-body systems without performing the partial wave decomposition. The obtained three-dimensional Faddeev-Yakubovsky integral equations are solved with two-body potentials. Results for four-body binding energies are in good agreement with achievements of the other methods.Comment: 29 pages, 2 eps figures, 8 tables, REVTeX

    Spin-Isospin Structure and Pion Condensation in Nucleon Matter

    Get PDF
    We report variational calculations of symmetric nuclear matter and pure neutron matter, using the new Argonne v18 two-nucleon and Urbana IX three-nucleon interactions. At the equilibrium density of 0.16 fm^-3 the two-nucleon densities in symmetric nuclear matter are found to exhibit a short-range spin-isospin structure similar to that found in light nuclei. We also find that both symmetric nuclear matter and pure neutron matter undergo transitions to phases with pion condensation at densities of 0.32 fm^-3 and 0.2 fm^-3, respectively. Neither transtion occurs with the Urbana v14 two-nucleon interaction, while only the transition in neutron matter occurs with the Argonne v14 two-nucleon interaction. The three-nucleon interaction is required for the transition to occur in symmetric nuclear matter, whereas the the transition in pure neutron matter occurs even in its absence. The behavior of the isovector spin-longitudinal response and the pion excess in the vicinity of the transition, and the model dependence of the transition are discussed.Comment: 44 pages RevTeX, 15 postscript figures. Minor modifications to original postin

    Acoustic radiation controls friction: Evidence from a spring-block experiment

    Full text link
    Brittle failures of materials and earthquakes generate acoustic/seismic waves which lead to radiation damping feedbacks that should be introduced in the dynamical equations of crack motion. We present direct experimental evidence of the importance of this feedback on the acoustic noise spectrum of well-controlled spring-block sliding experiments performed on a variety of smooth surfaces. The full noise spectrum is quantitatively explained by a simple noisy harmonic oscillator equation with a radiation damping force proportional to the derivative of the acceleration, added to a standard viscous term.Comment: 4 pages including 3 figures. Replaced with version accepted in PR

    Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions

    Get PDF
    We present measurements of π\pi^- and π+\pi^+ elliptic flow, v2v_2, at midrapidity in Au+Au collisions at sNN=\sqrt{s_{_{\rm NN}}} = 200, 62.4, 39, 27, 19.6, 11.5 and 7.7 GeV, as a function of event-by-event charge asymmetry, AchA_{ch}, based on data from the STAR experiment at RHIC. We find that π\pi^- (π+\pi^+) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at sNN=27 GeV\sqrt{s_{_{\rm NN}}} = \text{27 GeV} and higher. At sNN=200 GeV\sqrt{s_{_{\rm NN}}} = \text{200 GeV}, the slope of the difference of v2v_2 between π\pi^- and π+\pi^+ as a function of AchA_{ch} exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.Comment: 6 pages, 4 figure

    Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Au+Au Collisions at RHIC

    Get PDF
    We present results from a harmonic decomposition of two-particle azimuthal correlations measured with the STAR detector in Au+Au collisions for energies ranging from sNN=7.7\sqrt{s_{NN}}=7.7 GeV to 200 GeV. The third harmonic v32{2}=cos3(ϕ1ϕ2)v_3^2\{2\}=\langle \cos3(\phi_1-\phi_2)\rangle, where ϕ1ϕ2\phi_1-\phi_2 is the angular difference in azimuth, is studied as a function of the pseudorapidity difference between particle pairs Δη=η1η2\Delta\eta = \eta_1-\eta_2. Non-zero {\vthree} is directly related to the previously observed large-Δη\Delta\eta narrow-Δϕ\Delta\phi ridge correlations and has been shown in models to be sensitive to the existence of a low viscosity Quark Gluon Plasma (QGP) phase. For sufficiently central collisions, v32{2}v_3^2\{2\} persist down to an energy of 7.7 GeV suggesting that QGP may be created even in these low energy collisions. In peripheral collisions at these low energies however, v32{2}v_3^2\{2\} is consistent with zero. When scaled by pseudorapidity density of charged particle multiplicity per participating nucleon pair, v32{2}v_3^2\{2\} for central collisions shows a minimum near {\snn}=20=20 GeV.Comment: 7 pages, 4 figures, for submission to Phys. Rev. Let
    corecore