155 research outputs found

    Generation of the electrostatic field in the pulsar magnetosphere plasma

    Get PDF
    The behaviour of a relativistic electron-positron plasma in the pulsar magnetosphere is investigated. The equation of the motion of the magnetospheric plasma is discussed, from which it follows that, if the plasma particle radial velocity Vr>c/2{V_r}>{c/{\sqrt 2}} (where c is the speed of light), the centrifugal acceleration changes its sign and the particle braking begins. The stability of the magnetospheric plasma with respect to the radially oriented potential perturbations is discussed and the possibility of the electrostatic field generation in this plasma along the pulsar magnetic field lines is shown.Comment: Plain LaTe

    Transverse quasilinear relaxation in inhomogeneous magnetic field

    Get PDF
    Transverse quasilinear relaxation of the cyclotron-Cherenkov instability in the inhomogeneous magnetic field of pulsar magnetospheres is considered. We find quasilinear states in which the kinetic cyclotron-Cherenkov instability of a beam propagating through strongly magnetized pair plasma is saturated by the force arising in the inhomogeneous field due to the conservation of the adiabatic invariant. The resulting wave intensities generally have nonpower law frequency dependence, but in a broad frequency range can be well approximated by the power law with the spectral index -2. The emergent spectra and fluxes are consistent with the one observed from pulsars.Comment: 14 Pages, 4 Figure

    Nature of eclipsing pulsars

    Full text link
    We present a model for pulsar radio eclipses in some binary systems, and test this model for PSRs B1957+20 and J2051-0827. We suggest that in these binaries the companion stars are degenerate dwarfs with strong surface magnetic fields. The magnetospheres of these stars are permanently infused by the relativistic particles of the pulsar wind. We argue that the radio waves emitted by the pulsar split into the eigenmodes of the electron-positron plasma as they enter the companion's magnetosphere and are then strongly damped due to cyclotron resonance with the ambient plasma particles. Our model explains in a natural way the anomalous duration and behavior of radio eclipses observed in such systems. In particular, it provides stable, continuous, and frequency-dependent eclipses, in agreement with the observations. We predict a significant variation of linear polarization both at eclipse ingress and egress. In this paper we also suggest several possible mechanisms of generation of the optical and XX-ray emission observed from these binary systems.Comment: 12 pages, 5 figures, submitted to Ap

    Weak turbulence theory of the non-linear evolution of the ion ring distribution

    Full text link
    The nonlinear evolution of an ion ring instability in a low-beta magnetospheric plasma is considered. The evolution of the two-dimensional ring distribution is essentially quasilinear. Ignoring nonlinear processes the time-scale for the quasilinear evolution is the same as for the linear instability 1/t_ql gamma_l. However, when nonlinear processes become important, a new time scale becomes relevant to the wave saturation mechanism. Induced nonlinear scattering of the lower-hybrid waves by plasma electrons is the dominant nonlinearity relevant for plasmas in the inner magnetosphere and typically occurs on the timescale 1/t_ql w(M/m)W/nT, where W is the wave energy density, nT is the thermal energy density of the background plasma, and M/m is the ion to electron mass ratio, which has the consequence that the wave amplitude saturates at a low level, and the timescale for quasilinear relaxation is extended by orders of magnitude

    Two-Dimensional Hydrodynamic Simulations of Convection in Radiation-Dominated Accretion Disks

    Get PDF
    The standard equilibrium for radiation-dominated accretion disks has long been known to be viscously, thermally, and convectively unstable, but the nonlinear development of these instabilities---hence the actual state of such disks---has not yet been identified. By performing local two-dimensional hydrodynamic simulations of disks, we demonstrate that convective motions can release heat sufficiently rapidly as to substantially alter the vertical structure of the disk. If the dissipation rate within a vertical column is proportional to its mass, the disk settles into a new configuration thinner by a factor of two than the standard radiation-supported equilibrium. If, on the other hand, the vertically-integrated dissipation rate is proportional to the vertically-integrated total pressure, the disk is subject to the well-known thermal instability. Convection, however, biases the development of this instability toward collapse. The end result of such a collapse is a gas pressure-dominated equilibrium at the original column density.Comment: 10 pages, 7 figures, accepted for publication in ApJ. Please send comments to [email protected]

    Linear coupling and over-reflection phenomena of magnetohydrodynamic waves in smooth shear flows

    Full text link
    Special features of magnetohydrodynamic waves linear dynamics in smooth shear flows are studied. Quantitative asymptotic and numerical analysis are performed for wide range of system parameters when basic flow has constant shear of velocity and uniform magnetic field is parallel to the basic flow. The special features consist of magnetohydrodynamic wave mutual transformation and over-reflection phenomena. The transformation takes place for arbitrary shear rates and involves all magnetohydrodynamic wave modes. While the over-reflection occurs only for slow magnetosonic and Alfv\'en waves at high shear rates. Studied phenomena should be decisive in the elaboration of the self-sustaining model of magnetohydrodynamic turbulence in the shear flows

    Physics of Interpulse Emission in Radio Pulsars

    Full text link
    The magnetized induced Compton scattering off the particles of the ultrarelativistic electron-positron plasma of pulsar is considered. The main attention is paid to the transverse regime of the scattering, which holds in a moderately strong magnetic field. We specifically examine the problem on induced transverse scattering of the radio beam into the background, which takes place in the open field line tube of a pulsar. In this case, the radiation is predominantly scattered backwards and the scattered component may grow considerably. Based on this effect, we for the first time suggest a physical explanation of the interpulse emission observed in the profiles of some pulsars. Our model can naturally account for the peculiar spectral and polarization properties of the interpulses. Furthermore, it implies a specific connection of the interpulse to the main pulse, which may reveal itself in the consistent intensity fluctuations of the components at different timescales. Diverse observational manifestations of this connection, including the moding behavior of PSR B1822-09, the peculiar temporal and frequency structure of the giant interpulses in the Crab pulsar, and the intrinsic phase correspondence of the subpulse patterns in the main pulse and the interpulse of PSR B1702-19, are discussed in detail. It is also argued that the pulse-to-pulse fluctuations of the scattering efficiency may lead to strong variability of the interpulse, which is yet to be studied observationally. In particular, some pulsars may exhibit transient interpulses, i.e. the scattered component may be detectable only occasionally.Comment: 28 pages, 2 figures. Accepted for publication in Ap

    The spark-associated soliton model for pulsar radio emission

    Get PDF
    We propose a new, self-consistent theory of coherent pulsar radio emission based on the non-stationary sparking model of Ruderman & Sutherland (1975), modified by Gil & Sendyk (2000) in the accompanying Paper I. According to these authors, the polar cap is populated as densely as possible by a number of sparks with a characteristic perpendicular dimension D approximately equal to the polar gap height scale h, separated from each other also by about h. Each spark reappears in approximately the same place on the polar cap for a time scale much longer than its life-time and delivers to the open magnetosphere a sequence of electron-positron clouds which flow orderly along a flux tube of dipolar magnetic field lines. The overlapping of particles with different momenta from consecutive clouds leads to effective two-stream instability, which triggers electrostatic Langmuir waves at the altitudes of about 50 stellar radii. The electrostatic oscillations are modulationally unstable and their nonlinear evolution results in formation of ``bunch-like'' charged solitons. A characteristic soliton length along magnetic field lines is about 30 cm, so they are capable of emitting coherent curvature radiation at radio wavelengths. The net soliton charge is about 10^21 fundamental charges, contained within a volume of about 10^14 cm^3. For a typical pulsar, there are about 10^5 solitons associated with each of about 25 sparks operating on the polar cap at any instant. One soliton moving relativisticaly along dipolar field lines with a Lorentz factor of the order of 100 generates a power of about 10^21 erg/s by means of curvature radiation. Then the total power of a typical radio pulsar can be estimated as being about 10^(27-28) erg/s.Comment: 27 pages, 5 figures, accepted by Ap

    Hydrodynamic stability and mode coupling in Keplerian flows: local strato-rotational analysis

    Full text link
    Aims. Qualitative analysis of key (but yet unappreciated) linear phenomena in stratified hydrodynamic Keplerian flows: (i) the occurrence of a vortex mode, as a consequence of strato-rotational balance, with its transient dynamics; (ii) the generation of spiral-density waves (also called inertia-gravity or gΩg\Omega waves) by the vortex mode through linear mode coupling in shear flows. Methods. Non-modal analysis of linearized Boussinesq equations written in the shearing sheet approximation of accretion disk flows. Results. It is shown that the combined action of rotation and stratification introduces a new degree of freedom -- vortex mode perturbation -- which is linearly coupled with the spiral-density waves. These two modes are jointly able to extract energy from the background flow and they govern the disk dynamics in the small-scale range. The transient behavior of these modes is determined by the non-normality of the Keplerian shear flow. Tightly leading vortex mode perturbations undergo substantial transient growth, then, becoming trailing, inevitably generate trailing spiral-density waves by linear mode coupling. This course of events -- transient growth plus coupling -- is particularly pronounced for perturbation harmonics with comparable azimuthal and vertical scales and it renders the energy dynamics similar to the 3D unbounded plane Couette flow case. Conclusions. Our investigation strongly suggests that the so-called bypass concept of turbulence, which has been recently developed by the hydrodynamic community for spectrally stable shear flows, can also be applied to Keplerian disks. This conjecture may be confirmed by appropriate numerical simulations that take in account the vertical stratification and consequent mode coupling in the high Reynolds number regime.Comment: A&A (accepted
    • …
    corecore