43 research outputs found

    Homer2 within the nucleus accumbens core bidirectionally regulates alcohol intake by both P and Wistar rats

    Get PDF
    In murine models of alcoholism, the glutamate receptor scaffolding protein Homer2 bidirectionally regulates alcohol intake. Although chronic alcohol drinking increases Homer2 expression within the core subregion of the nucleus accumbens (NAc) of alcohol-preferring P rats, the relevance of this neuroadaptation for alcohol intake has yet to be determined in rats. Thus, the present study employed an adeno-associated viral vector (AAV) strategy to over-express and knock down the major rodent isoform Homer2b within the NAc of both P and outbred Wistar rats to examine for changes in alcohol preference and intake (0-30% v/v) under continuous-access procedures. The generalization of AAV effects to non-drug, palatable, sweet solutions was also determined in tests of sucrose (0-5% w/v) and saccharin (0-0.125% w/v) intake/preference. No net-flux in vivo microdialysis was conducted for glutamate in the NAc to relate Homer2-dependent changes in alcohol intake to extracellular levels of glutamate. Line differences were noted for sweet solution preference and intake, but these variables were not affected by intra-NAc AAV infusion in either line. In contrast, Homer2b over-expression elevated, while Homer2b knock-down reduced, alcohol intake in both lines, and this effect was greatest at the highest concentration. Strikingly, in P rats there was a direct association between changes in Homer2b expression and NAc extracellular glutamate levels, but this effect was not seen in Wistar rats. These data indicate that NAc Homer2b expression actively regulates alcohol consumption by rats, paralleling this previous observation in mice. Overall, these findings underscore the importance of mesocorticolimbic glutamate activity in alcohol abuse/dependence and suggest that Homer2b and/or its constituents may serve as molecular targets for the treatment of these disorders

    Blockade of nucleus accumbens 5-HT2A and 5-HT2C receptors prevents the expression of cocaine-induced behavioral and neurochemical sensitization in rats

    Get PDF
    The serotonin 5-HT2A and 5-HT2C receptors regulate the capacity of acute cocaine to augment behavior and monoamine levels within the nucleus accumbens (NAC), a brain region involved in cocaine’s addictive and psychotogenic properties. In the present study, we tested the hypothesis that NAC 5-HT2A and 5-HT2C receptor activation is involved in the expression of cocaine-induced neuroplasticity following protracted withdrawal from a sensitizing repeated cocaine regimen (days 1 and 7, 15 mg/kg; days 2–6, 30 mg/kg, i.p.). The effects of intra-NAC infusions of the 5-HT2A antagonist R-(+)-α-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenylethyl)]-4-piperidine methanol (MDL 100907; 0, 50, 100, 500 nM) or the 5-HT2C antagonist [6-chloro-5-methyl-1-(6-(2-methylpiridin-3-yloxy)pyridine-3-yl carbamoyl] inodoline dihydrochloride (SB 242084; 0, 50, 100, 500 nM) were first assessed upon the expression of locomotor activity elicited by a 15-mg/kg cocaine challenge injection administered at 3-week withdrawal. A follow-up in vivo microdialysis experiment then compared the effects of the local perfusion of 0, 50, or 100 nM of each antagonist upon cocaine-induced dopamine and glutamate sensitization in the NAC. Although neither MDL 100907 nor SB 242084 altered acute cocaine-induced locomotion, SB 242084 reduced acute cocaine-elevated NAC dopamine and glutamate levels. Intra-NAC perfusion with either compound blocked the expression of cocaine-induced locomotor and glutamate sensitization, but only MDL 100907 pretreatment prevented the expression of cocaine-induced dopamine sensitization. These data provide the first evidence that NAC 5-HT2A and 5-HT2C receptors are critical for the expression of cocaine-induced neuroplasticity following protracted withdrawal, which has relevance for their therapeutic utility in the treatment of addiction

    Mesocorticolimbic monoamine correlates of methamphetamine sensitization and motivation.

    Get PDF
    Methamphetamine (MA) is a highly addictive psychomotor stimulant, with life-time prevalence rates of abuse ranging from 5-10% world-wide. Yet, a paucity of research exists regarding MA addiction vulnerability/resiliency and neurobiological mediators of the transition to addiction that might occur upon repeated low-dose MA exposure, more characteristic of early drug use. As stimulant-elicited neuroplasticity within dopamine neurons innervating the nucleus accumbens (NAC) and prefrontal cortex (PFC) is theorized as central for addiction-related behavioral anomalies, we used a multi-disciplinary research approach in mice to examine the interactions between sub-toxic MA dosing, motivation for MA and mesocorticolimbic monoamines. Biochemical studies of C57BL/6J (B6) mice revealed short- (1 day), as well as longer-term (21 days), changes in extracellular dopamine, DAT and/or D2 receptors during withdrawal from 10, once daily, 2 mg/kg MA injections. Follow-up biochemical studies conducted in mice selectively bred for high vs. low MA drinking (respectively, MAHDR vs. MALDR mice), provided novel support for anomalies in mesocorticolimbic dopamine as a correlate of genetic vulnerability to high MA intake. Finally, neuropharmacological targeting of NAC dopamine in MA-treated B6 mice demonstrated a bi-directional regulation of MA-induced place-conditioning. These results extend extant literature for MA neurotoxicity by demonstrating that even subchronic exposure to relatively low MA doses are sufficient to elicit relatively long-lasting changes in mesocorticolimbic dopamine and that drug-induced or idiopathic anomalies in mesocorticolimbic dopamine may underpin vulnerability/resiliency to MA addiction

    Synaptic Depression Via Mglur1 Positive Allosteric Modulation Suppresses Cue-Induced Cocaine Craving

    Get PDF
    Cue-induced cocaine craving is a major cause of relapse in abstinent addicts. In rats, cue-induced craving progressively intensifies (incubates) during withdrawal from extended-access cocaine self-administration. After ~1 month of withdrawal, incubated craving is mediated by Ca(2+)-permeable AMPA receptors (CP-AMPARs) that accumulate in the nucleus accumbens (NAc). We found that decreased mGluR1 surface expression in the NAc preceded and enabled CP-AMPAR accumulation. Thus, restoring mGluR1 transmission by administering repeated injections of an mGluR1 positive allosteric modulator (PAM) prevented CP-AMPAR accumulation and incubation, whereas blocking mGluR1 transmission at even earlier withdrawal times accelerated CP-AMPAR accumulation. In studies conducted after prolonged withdrawal, when CP-AMPAR levels and cue-induced craving are high, we found that systemic administration of an mGluR1 PAM attenuated the expression of incubated craving by reducing CP-AMPAR transmission in the NAc to control levels. These results suggest a strategy in which recovering addicts could use a systemically active compound to protect against cue-induced relapse

    Behavioral and Neurochemical Phenotyping of Mice Incapable of Homer1a Induction

    No full text
    Immediate early and constitutively expressed products of the Homer1 gene regulate the functional assembly of post-synaptic density proteins at glutamatergic synapses to influence excitatory neurotransmission and synaptic plasticity. Earlier studies of Homer1 gene knock-out (KO) mice indicated active, but distinct, roles for IEG and constitutively expressed Homer1 gene products in regulating cognitive, emotional, motivational and sensorimotor processing, as well as behavioral and neurochemical sensitivity to cocaine. More recent characterization of transgenic mice engineered to prevent generation of the IEG form (a.k.a Homer1a KO) pose a critical role for Homer1a in cocaine-induced behavioral and neurochemical sensitization of relevance to drug addiction and related neuropsychiatric disorders. Here, we extend our characterization of the Homer1a KO mouse and report a modest pro-depressant phenotype, but no deleterious effects of the KO upon spatial learning/memory, prepulse inhibition, or cocaine-induced place-conditioning. As we reported previously, Homer1a KO mice did not develop cocaine-induced behavioral or neurochemical sensitization within the nucleus accumbens; however, virus-mediated Homer1a over-expression within the nucleus accumbens reversed the sensitization phenotype of KO mice. We also report several neurochemical abnormalities within the nucleus accumbens of Homer1a KO mice that include: elevated basal dopamine and reduced basal glutamate content, Group1 mGluR agonist-induced glutamate release and high K+-stimulated release of dopamine and glutamate within this region. Many of the neurochemical anomalies exhibited by Homer1a KO mice are recapitulated upon deletion of the entire Homer1 gene; however, Homer1 deletion did not affect NAC dopamine or alter K+-stimulated neurotransmitter release within this region. These data show that the selective deletion of Homer1a produces a behavioral and neurochemical phenotype that is distinguishable from that produced by deletion of the entire Homer1 gene. Moreover, the data indicate a specific role for Homer1a in regulating cocaine-induced behavioral and neurochemical sensitization of potential relevance to the psychotogenic properties of this drug
    corecore