7 research outputs found

    The Maximum Chromatic Number of the Disjointness Graph of Segments on nn-point Sets in the Plane with n≤16n\leq 16

    Full text link
    Let PP be a finite set of points in general position in the plane. The disjointness graph of segments D(P)D(P) of PP is the graph whose vertices are all the closed straight line segments with endpoints in PP, two of which are adjacent in D(P)D(P) if and only if they are disjoint. As usual, we use χ(D(P))\chi(D(P)) to denote the chromatic number of D(P)D(P), and use d(n)d(n) to denote the maximum χ(D(P))\chi(D(P)) taken over all sets PP of nn points in general position in the plane. In this paper we show that d(n)=n−2d(n)=n-2 if and only if n∈{3,4,…,16}n\in \{3,4,\ldots ,16\}.Comment: 25 pages, 3 figure

    A convex decomposition

    Get PDF
    Dada una colección P de puntos en el plano, una descomposición convexa de P es un conjunto de polígonos convexos con vértices en P que satisfacen lo siguiente: La unión de todos los elementos de es el cierre convexo de P, cada elemento de es vacío (no contiene a ningún otro elemento de P en su interior) y para cualesquiera 2 elementos diferentes en sus interiores son disjuntos (se intersecarán en a lo más una arista). Únicamente se sabe que existen descomposiciones convexas con a lo más 7n/5 elementos para toda colección de n puntos. En este trabajo diremos cómo obtener una descomposición convexa específica de P con a lo más 3n/2 elementos. Para citar este artículo: M. Lomelí-Haro, V. Borja, J.A. Hernández, Una descomposición convexa, Rev. Integr. Temas Mat. 32 (2014), no. 2, 169-180.Given a point set P on the plane, a convex decomposition of P is a set of convex polygons with vertices in P satisfying the following conditions: The union of all elements in is the convex hull of P, every element in is empty (that is, they no contain any element of P in its interior), and any given 2 elements in its interiors are disjoint intersecting them in at most one edge. It is known that if P has n elements, then there exists a convex decomposition of P with at most 7n/5 elements. In this work we give a procedure to find a specific convex decomposition of P with at most 3n/2 elements. To cite this article: M. Lomelí-Haro, V. Borja, J.A. Hernández, Una descomposición convexa, Rev. Integr. Temas Mat. 32 (2014), no. 2, 169-180. &nbsp

    Gráficas K-críticas en cruces

    No full text

    Una descomposición convexa

    Get PDF
    Dada una colección P de puntos en el plano, una descomposición convexa de P es un conjunto Γ de polígonos convexos convértices en P que satisfacen lo siguiente: La unión de todos los elementos de Γ es el cierre convexo de P, cada elemento de Γ es vacío (no contiene a ningún otro elemento de P en su interior) y para cualesquiera 2 elementos diferentes en Γ sus interiores son disjuntos (se intersecarán en a lo más una arista). Únicamente se sabe que existen descomposiciones convexas con a lo más 7n/5 elementos para toda colección de n puntos. En este trabajo diremos cómo obtener una descomposición convexa específica de P con a lo más 3n/ 2 elementos

    The Chromatic Number of the Disjointness Graph of the Double Chain

    No full text
    Let PP be a set of n≥4n\geq 4 points in general position in the plane. Consider all the closed straight line segments with both endpoints in PP. Suppose that these segments are colored with the rule that disjoint segments receive different colors. In this paper we show that if PP is the point configuration known as the double chain, with kk points in the upper convex chain and l≥kl \ge k points in the lower convex chain, then k+l−⌊2l+14−12⌋k+l- \left\lfloor \sqrt{2l+\frac{1}{4}} - \frac{1}{2}\right\rfloor colors are needed and that this number is sufficient

    The Chromatic Number of the Disjointness Graph of the Double Chain

    No full text
    Let PP be a set of n≥4n\geq 4 points in general position in the plane.Consider all the closed straight line segments with both endpoints in PP.Suppose that these segments are colored with the rule that disjoint segmentsreceive different colors. In this paper we show that if PP is the pointconfiguration known as the double chain, with kk points in the upper convexchain and l≥kl \ge k points in the lower convex chain, then k+l−⌊2l+14−12⌋k+l- \left\lfloor\sqrt{2l+\frac{1}{4}} - \frac{1}{2}\right\rfloor colors are needed and thatthis number is sufficient
    corecore