408 research outputs found

    Synthèse d'analogues d'aminoglycosides par voie chimique et ingénierie métabolique (Application à l'étude des ARN par RMN du fluor)

    Get PDF
    Les ARN constituent des cibles thérapeutiques extrêmement intéressantes bien qu encore assez peu exploitées. En effet, les obstacles pour la conception de ligands spécifiques de ces cibles non traditionnelles, polyanioniques et très flexibles, sont encore loin d être levés. Les aminoglycosides, utilisés depuis longtemps pour leurs propriétés antibiotiques, sont souvent décrits comme des ligands universels d ARN. Leur structure constitue donc une architecture favorable pour l élaboration de nouveaux ligands spécifiques des ARN.Le but de cette thèse a été de développer une méthode systémique originale combinant chimie organique et microbiologie pour synthétiser de nouvelles molécules de structure analogue aux aminoglycosides, se fixant de façon spécifique sur des cibles ARN. Ce travail repose sur la compréhension récente des voies de biosynthèse des aminoglycosides permettant leur ingénierie rationnelle selon une stratégie de mutasynthèse. Cette approche expérimentale s appuie sur la conception de mimes de métabolites naturels pouvant être transformés par des bactéries génétiquement modifiées. Le développement de méthodologies novatrices en ingénierie métabolique, synthèse organique et chimie analytique nous a permis de concevoir des analogues d aminoglycosides fluorés qui se sont avérées être d excellentes sondes dans l étude des ARN par RMN du fluor.Pas de résumé en anglaisPARIS5-Bibliotheque electronique (751069902) / SudocSudocFranceF

    Nerve excitability changes related to muscle weakness in chronic progressive external ophthalmoplegia

    Get PDF
    Objective: To explore potential spreading to peripheral nerves of the mitochondrial dysfunction in chronic progressive external ophthalmoplegia (CPEO) by assessing axonal excitability. Methods: CPEO patients (n = 13) with large size deletion of mitochondrial DNA and matching healthy controls (n = 22) were included in a case-control study. Muscle strength was quantified using MRC sum-score and used to define two groups of patients: CPEO-weak and CPEO-normal (normal strength). Nerve excitability properties of median motor axons were assessed with the TROND protocol and changes interpreted with the aid of a model. Results: Alterations of nerve excitability strongly correlated with scores of muscle strength. CPEO-weak displayed abnormal nerve excitability compared to CPEO-normal and healthy controls, with increased superexcitability and responses to hyperpolarizing current. Modeling indicated that the CPEO-weak recordings were best explained by an increase in the ‘Barrett-Barrett’ conductance across the myelin sheath. Conclusion: CPEO patients with skeletal weakness presented sub-clinical nerve excitability changes, which were not consistent with axonal membrane depolarization, but suggested Schwann cell involvement. Significance: This study provides new insights into the spreading of large size deletion of mitochondrial DNA to Schwann cells in CPEO patients

    Regionalized Pathology Correlates with Augmentation of mtDNA Copy Numbers in a Patient with Myoclonic Epilepsy with Ragged-Red Fibers (MERRF-Syndrome)

    Get PDF
    Human patients with myoclonic epilepsy with ragged-red fibers (MERRF) suffer from regionalized pathology caused by a mutation in the mitochondrial DNA (m.8344A→G). In MERRF-syndrome brain and skeletal muscles are predominantly affected, despite mtDNA being present in any tissue. In the past such tissue-specificity could not be explained by varying mtDNA mutation loads. In search for a region-specific pathology in human individuals we determined the mtDNA/nDNA ratios along with the mutation loads in 43 different post mortem tissue samples of a 16-year-old female MERRF patient and in four previously healthy victims of motor vehicle accidents. In brain and muscle we further determined the quantity of mitochondrial proteins (COX subunits II and IV), transcription factors (NRF1 and TFAM), and VDAC1 (Porin) as a marker for the mitochondrial mass. In the patient the mutation loads varied merely between 89–100%. However, mtDNA copy numbers were increased 3–7 fold in predominantly affected brain areas (e.g. hippocampus, cortex and putamen) and in skeletal muscle. Similar increases were absent in unaffected tissues (e.g. heart, lung, kidney, liver, and gastrointestinal organs). Such mtDNA copy number increase was not paralleled by an augmentation of mitochondrial mass in some investigated tissues, predominantly in the most affected tissue regions of the brain. We thus conclude that “futile” stimulation of mtDNA replication per se or a secondary failure to increase the mitochondrial mass may contribute to the regionalized pathology seen in MERRF-syndrome

    Correction of the consequences of mitochondrial 3243A>G mutation in the MT-TL1 gene causing the MELAS syndrome by tRNA import into mitochondria

    Get PDF
    Mutations in human mitochondrial DNA are often associated with incurable human neuromuscular diseases. Among these mutations, an important number have been identified in tRNA genes, including 29 in the gene MT-TL1 coding for the tRNALeu(UUR). The m.3243A>G mutation was described as the major cause of the MELAS syndrome (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes). This mutation was reported to reduce tRNALeu(UUR) aminoacylation and modification of its anti-codon wobble position, which results in a defective mitochondrial protein synthesis and reduced activities of respiratory chain complexes. In the present study, we have tested whether the mitochondrial targeting of recombinant tRNAs bearing the identity elements for human mitochondrial leucyl-tRNA synthetase can rescue the phenotype caused by MELAS mutation in human transmitochondrial cybrid cells. We demonstrate that nuclear expression and mitochondrial targeting of specifically designed transgenic tRNAs results in an improvement of mitochondrial translation, increased levels of mitochondrial DNA-encoded respiratory complexes subunits, and significant rescue of respiration. These findings prove the possibility to direct tRNAs with changed aminoacylation specificities into mitochondria, thus extending the potential therapeutic strategy of allotopic expression to address mitochondrial disorders

    Mitochondrial targeting of recombinant RNAs modulates the level of a heteroplasmic mutation in human mitochondrial DNA associated with Kearns Sayre Syndrome

    Get PDF
    Mitochondrial mutations, an important cause of incurable human neuromuscular diseases, are mostly heteroplasmic: mutated mitochondrial DNA is present in cells simultaneously with wild-type genomes, the pathogenic threshold being generally >70% of mutant mtDNA. We studied whether heteroplasmy level could be decreased by specifically designed oligoribonucleotides, targeted into mitochondria by the pathway delivering RNA molecules in vivo. Using mitochondrially imported RNAs as vectors, we demonstrated that oligoribonucleotides complementary to mutant mtDNA region can specifically reduce the proportion of mtDNA bearing a large deletion associated with the Kearns Sayre Syndrome in cultured transmitochondrial cybrid cells. These findings may be relevant to developing of a new tool for therapy of mtDNA associated diseases

    R31C GNRH1 mutation and congenital hypogonadotropic hypogonadism

    Get PDF
    Normosmic congenital hypogonadotropic hypogonadism (nCHH) is a rare reproductive disease leading to lack of puberty and infertility. Loss-of-function mutations of GNRH1 gene are a very rare cause of autosomal recessive nCHH. R31C GNRH1 is the only missense mutation that affects the conserved GnRH decapeptide sequence. This mutation was identified in a CpG islet in nine nCHH subjects from four unrelated families, giving evidence for a putative “hot spot”. Interestingly, all the nCHH patients carry this mutation in heterozygosis that strikingly contrasts with the recessive inheritance associated with frame shift and non-sense mutations. Therefore, after exclusion of a second genetic event, a comprehensive functional characterization of the mutant R31C GnRH was undertaken. Using different cellular models, we clearly demonstrate a dramatic reduction of the mutant decapeptide capacity to bind GnRH-receptor, to activate MAPK pathway and to trigger inositol phosphate accumulation and intracellular calcium mobilization. In addition it is less able than wild type to induce lh-beta transcription and LH secretion in gonadotrope cells. Finally, the absence of a negative dominance in vitro offers a unique opportunity to discuss the complex in vivo patho-physiology of this form of nCHH

    Prolactin Receptor Signaling Is Essential for Perinatal Brown Adipocyte Function: A Role for Insulin-like Growth Factor-2

    Get PDF
    BACKGROUND: The lactogenic hormones prolactin (PRL) and placental lactogens (PL) play central roles in reproduction and mammary development. Their actions are mediated via binding to PRL receptor (PRLR), highly expressed in brown adipose tissue (BAT), yet their impact on adipocyte function and metabolism remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: PRLR knockout (KO) newborn mice were phenotypically characterized in terms of thermoregulation and their BAT differentiation assayed for gene expression studies. Derived brown preadipocyte cell lines were established to evaluate the molecular mechanisms involved in PRL signaling on BAT function. Here, we report that newborn mice lacking PRLR have hypotrophic BAT depots that express low levels of adipocyte nuclear receptor PPARgamma2, its coactivator PGC-1alpha, uncoupling protein 1 (UCP1) and the beta3 adrenoceptor, reducing mouse viability during cold challenge. Immortalized PRLR KO preadipocytes fail to undergo differentiation into mature adipocytes, a defect reversed by reintroduction of PRLR. That the effects of the lactogens in BAT are at least partly mediated by Insulin-like Growth Factor-2 (IGF-2) is supported by: i) a striking reduction in BAT IGF-2 expression in PRLR KO mice and in PRLR-deficient preadipocytes; ii) induction of cellular IGF-2 expression by PRL through JAK2/STAT5 pathway activation; and iii) reversal of defective differentiation in PRLR KO cells by exogenous IGF-2. CONCLUSIONS: Our findings demonstrate that the lactogens act in concert with IGF-2 to control brown adipocyte differentiation and growth. Given the prominent role of brown adipose tissue during the perinatal period, our results identified prolactin receptor signaling as a major player and a potential therapeutic target in protecting newborn mammals against hypothermia
    corecore