5,981 research outputs found

    CMOS array design automation techniques

    Get PDF
    The design considerations and the circuit development for a 4096-bit CMOS SOS ROM chip, the ATL078 are described. Organization of the ATL078 is 512 words by 8 bits. The ROM was designed to be programmable either at the metal mask level or by a directed laser beam after processing. The development of a 4K CMOS SOS ROM fills a void left by available ROM chip types, and makes the design of a totally major high speed system more realizable

    CMOS array design automation techniques

    Get PDF
    A low cost, quick turnaround technique for generating custom metal oxide semiconductor arrays using the standard cell approach was developed, implemented, tested and validated. Basic cell design topology and guidelines are defined based on an extensive analysis that includes circuit, layout, process, array topology and required performance considerations particularly high circuit speed

    Control of Material Damping in High-Q Membrane Microresonators

    Full text link
    We study the mechanical quality factors of bilayer aluminum/silicon-nitride membranes. By coating ultrahigh-Q Si3N4 membranes with a more lossy metal, we can precisely measure the effect of material loss on Q's of tensioned resonator modes over a large range of frequencies. We develop a theoretical model that interprets our results and predicts the damping can be reduced significantly by patterning the metal film. Using such patterning, we fabricate Al-Si3N4 membranes with ultrahigh Q at room temperature. Our work elucidates the role of material loss in the Q of membrane resonators and informs the design of hybrid mechanical oscillators for optical-electrical-mechanical quantum interfaces

    HST/ACS weak lensing analysis of the galaxy cluster RDCS 1252.9-2927 at z=1.24

    Full text link
    We present a weak lensing analysis of one of the most distant massive galaxy cluster known, RDCS 1252.9-2927 at z=1.24, using deep images from the Advanced Camera for Survey (ACS) on board the Hubble Space Telescope (HST). By taking advantage of the depth and of the angular resolution of the ACS images, we detect for the first time at z>1 a clear weak lensing signal in both the i (F775W) and z (F850LP) filters. We measure a 5-\sigma signal in the i band and a 3-\sigma signal in the shallower z band image. The two radial mass profiles are found to be in very good agreement with each other, and provide a measurement of the total mass of the cluster inside a 1Mpc radius of M(<1Mpc) = (8.0 +/- 1.3) x 10^14 M_\odot in the current cosmological concordance model h =0.70, \Omega_m=0.3, \Omega_\Lambda=0.7, assuming a redshift distribution of background galaxies as inferred from the Hubble Deep Fields surveys. A weak lensing signal is detected out to the boundary of our field (3' radius, corresponding to 1.5Mpc at the cluster redshift). We detect a small offset between the centroid of the weak lensing mass map and the brightest cluster galaxy, and we discuss the possible origin of this discrepancy. The cumulative weak lensing radial mass profile is found to be in good agreement with the X-ray mass estimate based on Chandr and XMM-Newton observations, at least out to R_500=0.5Mpc.Comment: 38 pages, ApJ in press. Full resolution images available at http://www.eso.org/~prosati/RDCS1252/Lombardi_etal_accepted.pd

    Correlation functions of scattering matrix elements in microwave cavities with strong absorption

    Full text link
    The scattering matrix was measured for microwave cavities with two antennas. It was analyzed in the regime of overlapping resonances. The theoretical description in terms of a statistical scattering matrix and the rescaled Breit-Wigner approximation has been applied to this regime. The experimental results for the auto-correlation function show that the absorption in the cavity walls yields an exponential decay. This behavior can only be modeled using a large number of weakly coupled channels. In comparison to the auto-correlation functions, the cross-correlation functions of the diagonal S-matrix elements display a more pronounced difference between regular and chaotic systems

    Simulations of Damped Lyman-Alpha and Lyman Limit Absorbers in Different Cosmologies: Implications for Structure Formation at High Redshift

    Get PDF
    We use hydrodynamic cosmological simulations to study damped Lyman-alpha (DLA) and Lyman limit (LL) absorption at redshifts z=2-4 in five variants of the cold dark matter scenario. Our standard simulations resolve the formation of dense concentrations of neutral gas in halos with circular velocity v_c roughly 140 km/s for Omega_m=1 and 90 km/s for Omega_m=0.4, at z=2; an additional LCDM simulation resolves halos down to v_c approximately 50 km/s at z=3. We find a clear relation between HI column density and projected distance to the center of the nearest galaxy, with DLA absorption usually confined to galactocentric radii less than 10-15 kpc and LL absorption arising out to projected separations of 30 kpc or more. Detailed examination provides evidence of non-equilibrium effects on absorption cross-section. If we consider only absorption in the halos resolved by our standard simulations, then all five models fall short of reproducing the observed abundance of DLA and LL systems at these redshifts. If we extrapolate to lower halo masses, we find all four models are consistent with the observed abundance of DLA systems if the the extrapolated behavior extends to circular velocities roughly 50-80 km/s, and they may produce too much absorption if the relation continues to 40 km/s. Our results suggest that LL absorption is closely akin to DLA absorption, arising in less massive halos or at larger galactocentric radii but not caused by processes acting on a radically different mass scale.Comment: 33 pages with 10 embedded EPS figures. Substantially revised and updated from original version. Includes new high-resolution simulations. Accepted for publication in the Ap

    Two-dimensional macroscopic quantum dynamics in YBCO Josephson junctions

    Full text link
    We theoretically study classical thermal activation (TA) and macroscopic quantum tunneling (MQT) for a YBCO Josephson junction coupled with an LC circuit. The TA and MQT escape rate are calculated by taking into account the two-dimensional nature of the classical and quantum phase dynamics. We find that the MQT escape rate is largely suppressed by the coupling to the LC circuit. On the other hand, this coupling leads to the slight reduction of the TA escape rate. These results are relevant for the interpretation of a recent experiment on the MQT and TA phenomena in YBCO bi-epitaxial Josephson junctions.Comment: 9 pages, 2 figure

    The nature of the dense core population in the Pipe Nebula: A survey of NH3, CCS, and HC5N molecular line emission

    Full text link
    Recent extinction studies of the Pipe Nebula (d=130 pc) reveal many cores spanning a range in mass from 0.2 to 20.4 Msun. These dense cores were identified via their high extinction and comprise a starless population in a very early stage of development. Here we present a survey of NH3 (1,1), NH3 (2,2), CCS (2_1,1_0), and HC5N (9,8) emission toward 46 of these cores. An atlas of the 2MASS extinction maps is also presented. In total, we detect 63% of the cores in NH3 (1,1) 22% in NH3 (2,2), 28% in CCS, and 9% in HC5N emission. We find the cores are associated with dense gas (~10^4 cm-3) with 9.5 < T_k < 17 K. Compared to C18O, we find the NH3 linewidths are systematically narrower, implying that the NH3 is tracing the dense component of the gas and that these cores are relatively quiescent. We find no correlation between core linewidth and size. The derived properties of the Pipe cores are similar to cores within other low-mass star-forming regions: the only differences are that the Pipe cores have weaker NH3 emision and most show no current star formation as evidenced by the lack of embedded infrared sources. Such weak NH3 emission could arise due to low column densities and abundances or reduced excitation due to relatively low core volume densities. Either alternative implies that the cores are relatively young. Thus, the Pipe cores represent an excellent sample of dense cores in which to study the initial conditions for star formation and the earliest stages of core formation and evolution.Comment: 35 pages, 10 figures (excluding the appendix). For the complete appendix contact [email protected]. Accepted for publication in ApJ
    corecore