6,545 research outputs found

    Double lenses

    Full text link
    The analysis of the shear induced by a single cluster on the images of a large number of background galaxies is all centered around the curl-free character of a well-known vector field that can be derived from the data. Such basic property breaks down when the source galaxies happen to be observed through two clusters at different redshifts, partially aligned along the line of sight. In this paper we address the study of double lenses and obtain five main results. (i) First we generalize the procedure to extract the available information, contained in the observed shear field, from the case of a single lens to that of a double lens. (ii) Then we evaluate the possibility of detecting the signature of double lensing given the known properties of the distribution of clusters of galaxies. (iii) As a different astrophysical application, we demonstrate how the method can be used to detect the presence of a dark cluster that might happen to be partially aligned with a bright cluster studied in terms of statistical lensing. (iv) In addition, we show that the redshift distribution of the source galaxies, which in principle might also contribute to break the curl-free character of the shear field, actually produces systematic effects typically two orders of magnitude smaller than the double lensing effects we are focusing on. (v) Remarkably, a discussion of relevant contributions to the noise of the shear measurement has brought up an intrinsic limitation of weak lensing analyses, since one specific contribution, associated with the presence of a non-vanishing two-galaxy correlation function, turns out not to decrease with the density of source galaxies (and thus with the depth of the observations).Comment: 40 pages, 15 figures. Accepted for publication in ApJ main journa

    Mapping Global Star Formation in the Interacting Galaxy Pair Arp32

    Get PDF
    A multi-wavelength set of photometric data including UV (GALEX), optical, near-IR, infrared (Spitzer) and radio (VLA 20cm) images and spectroscopic observations are used to map the dust-obscured and unobscured star formation in the galaxy pair Arp 32. The system consists of an actively starforming galaxy and another one with depressed star formation. The most active galaxy has disrupted morphology and different sites of star formation. Spectroscopic data show hints of nuclear activity in its core, intense star formation in limited regions of the galaxy as well as an underlying population of stars witnessing a past episode of star formation. Current star formation rates are estimated from UV and bolometric IR luminosities

    Control of Material Damping in High-Q Membrane Microresonators

    Full text link
    We study the mechanical quality factors of bilayer aluminum/silicon-nitride membranes. By coating ultrahigh-Q Si3N4 membranes with a more lossy metal, we can precisely measure the effect of material loss on Q's of tensioned resonator modes over a large range of frequencies. We develop a theoretical model that interprets our results and predicts the damping can be reduced significantly by patterning the metal film. Using such patterning, we fabricate Al-Si3N4 membranes with ultrahigh Q at room temperature. Our work elucidates the role of material loss in the Q of membrane resonators and informs the design of hybrid mechanical oscillators for optical-electrical-mechanical quantum interfaces

    HST/ACS weak lensing analysis of the galaxy cluster RDCS 1252.9-2927 at z=1.24

    Full text link
    We present a weak lensing analysis of one of the most distant massive galaxy cluster known, RDCS 1252.9-2927 at z=1.24, using deep images from the Advanced Camera for Survey (ACS) on board the Hubble Space Telescope (HST). By taking advantage of the depth and of the angular resolution of the ACS images, we detect for the first time at z>1 a clear weak lensing signal in both the i (F775W) and z (F850LP) filters. We measure a 5-\sigma signal in the i band and a 3-\sigma signal in the shallower z band image. The two radial mass profiles are found to be in very good agreement with each other, and provide a measurement of the total mass of the cluster inside a 1Mpc radius of M(<1Mpc) = (8.0 +/- 1.3) x 10^14 M_\odot in the current cosmological concordance model h =0.70, \Omega_m=0.3, \Omega_\Lambda=0.7, assuming a redshift distribution of background galaxies as inferred from the Hubble Deep Fields surveys. A weak lensing signal is detected out to the boundary of our field (3' radius, corresponding to 1.5Mpc at the cluster redshift). We detect a small offset between the centroid of the weak lensing mass map and the brightest cluster galaxy, and we discuss the possible origin of this discrepancy. The cumulative weak lensing radial mass profile is found to be in good agreement with the X-ray mass estimate based on Chandr and XMM-Newton observations, at least out to R_500=0.5Mpc.Comment: 38 pages, ApJ in press. Full resolution images available at http://www.eso.org/~prosati/RDCS1252/Lombardi_etal_accepted.pd

    Simulations of Damped Lyman-Alpha and Lyman Limit Absorbers in Different Cosmologies: Implications for Structure Formation at High Redshift

    Get PDF
    We use hydrodynamic cosmological simulations to study damped Lyman-alpha (DLA) and Lyman limit (LL) absorption at redshifts z=2-4 in five variants of the cold dark matter scenario. Our standard simulations resolve the formation of dense concentrations of neutral gas in halos with circular velocity v_c roughly 140 km/s for Omega_m=1 and 90 km/s for Omega_m=0.4, at z=2; an additional LCDM simulation resolves halos down to v_c approximately 50 km/s at z=3. We find a clear relation between HI column density and projected distance to the center of the nearest galaxy, with DLA absorption usually confined to galactocentric radii less than 10-15 kpc and LL absorption arising out to projected separations of 30 kpc or more. Detailed examination provides evidence of non-equilibrium effects on absorption cross-section. If we consider only absorption in the halos resolved by our standard simulations, then all five models fall short of reproducing the observed abundance of DLA and LL systems at these redshifts. If we extrapolate to lower halo masses, we find all four models are consistent with the observed abundance of DLA systems if the the extrapolated behavior extends to circular velocities roughly 50-80 km/s, and they may produce too much absorption if the relation continues to 40 km/s. Our results suggest that LL absorption is closely akin to DLA absorption, arising in less massive halos or at larger galactocentric radii but not caused by processes acting on a radically different mass scale.Comment: 33 pages with 10 embedded EPS figures. Substantially revised and updated from original version. Includes new high-resolution simulations. Accepted for publication in the Ap

    NICMOS Snapshot Survey of Damped Lyman Alpha Quasars

    Full text link
    We image 19 quasars with 22 damped Lyman alpha (DLA) systems using the F160W filter and the Near-Infrared Camera and Multiobject Spectrograph aboard the Hubble Space Telescope, in both direct and coronagraphic modes. We reach 5 sigma detection limits of ~H=22 in the majority of our images. We compare our observations to the observed Lyman-break population of high-redshift galaxies, as well as Bruzual & Charlot evolutionary models of present-day galaxies redshifted to the distances of the absorption systems. We predict H magnitudes for our DLAs, assuming they are producing stars like an L* Lyman-break galaxy (LBG) at their redshift. Comparing these predictions to our sensitivity, we find that we should be able to detect a galaxy around 0.5-1.0 L* (LBG) for most of our observations. We find only one new possible candidate, that near LBQS0010-0012. This scarcity of candidates leads us to the conclusion that most DLA systems are not drawn from a normal LBG luminosity function nor a local galaxy luminosity function placed at these high redshifts.Comment: 31 pages, 8 figures, Accepted for Feb. 10 issue of Ap

    The Star Formation Rate Intensity Distribution Function--Implications for the Cosmic Star Formation Rate History of the Universe

    Get PDF
    We address the effects of cosmological surface brightness dimming on observations of faint galaxies by examining the distribution of "unobscured" star formation rate intensities versus redshift. We use the star formation rate intensity distribution function to assess the ultraviolet luminosity density versus redshift, based on our photometry and photometric redshift measurements of faint galaxies in the HDF and the HDF--S WFPC2 and NICMOS fields. We find that (1) previous measurements have missed a dominant fraction of the ultraviolet luminosity density of the universe at high redshifts by neglecting cosmological surface brightness dimming effects, which are important at redshifts larger than z = 2, (2) the incidence of the highest intensity star forming regions increases monotonically with redshift, and (3) the ultraviolet luminosity density plausibly increases monotonically with redshift through the highest redshifts observed. By measuring the spectrum of the luminosity density versus redshift, we also find that (4) previous measurements of the ultraviolet luminosity density at redshifts z < 2 must be reduced by a factor 2 to allow for the spectrum of the luminosity density between rest-frame wavelengths 1500 and 2800 A. And by comparing with observations of high-redshift damped Lyman-alpha absorption systems detected toward background QSOs, we further find that (5) the distribution of star formation rate intensities matches the distribution of neutral hydrogen column densities at redshifts z = 2 through 5, which establishes a quantitative connection between high-redshift galaxies and high column density gas and suggests that high-redshift damped Lyman-alpha absorption systems trace lower star formation rate intensity regions of the same galaxies detected in star light in the HDF and HDF--S.Comment: 28 pages, 9 figures; accepted for publication in the Astrophysical Journa

    Discovery of Damped Lyman-Alpha Systems at Redshifts Less Than 1.65 and Results on their Incidence and Cosmological Mass Density

    Get PDF
    We report results on the incidence and cosmological mass density of damped Lyman-alpha (DLA) systems at redshifts less that 1.65. We used HST and an efficient non-traditional (but unbiased) survey technique to discover DLA systems at redshifts z<1.65, where we observe the Lyman-alpha line in known MgII absorption-line systems. We uncovered 14 DLA lines including 2 serendipitously. We find that (1) The DLA absorbers are drawn almost exclusively from the population of MgII absorbers which have rest equivalent widths W(2796)>0.6A. (2) The incidence of DLA systems per unit redshift, n(DLA), is observed to decrease with decreasing redshift. (3) On the other hand, the cosmological mass density of neutral gas in low-redshift DLA absorbers, Omega(DLA), is observed to be comparable to that observed at high redshift. (4) The low-redshift DLA absorbers exhibit a significantly larger fraction of very high column density systems in comparison to determinations at both high redshift and locally.Comment: 47 pages in LaTeX - emulateapj style with included tables and encapsulated postscript figures. Accepted for Publication in Astrophysical Journal Supplements. Results unchanged, text revise
    • 

    corecore