We address the effects of cosmological surface brightness dimming on
observations of faint galaxies by examining the distribution of "unobscured"
star formation rate intensities versus redshift. We use the star formation rate
intensity distribution function to assess the ultraviolet luminosity density
versus redshift, based on our photometry and photometric redshift measurements
of faint galaxies in the HDF and the HDF--S WFPC2 and NICMOS fields. We find
that (1) previous measurements have missed a dominant fraction of the
ultraviolet luminosity density of the universe at high redshifts by neglecting
cosmological surface brightness dimming effects, which are important at
redshifts larger than z = 2, (2) the incidence of the highest intensity star
forming regions increases monotonically with redshift, and (3) the ultraviolet
luminosity density plausibly increases monotonically with redshift through the
highest redshifts observed. By measuring the spectrum of the luminosity density
versus redshift, we also find that (4) previous measurements of the ultraviolet
luminosity density at redshifts z < 2 must be reduced by a factor 2 to allow
for the spectrum of the luminosity density between rest-frame wavelengths 1500
and 2800 A. And by comparing with observations of high-redshift damped
Lyman-alpha absorption systems detected toward background QSOs, we further find
that (5) the distribution of star formation rate intensities matches the
distribution of neutral hydrogen column densities at redshifts z = 2 through 5,
which establishes a quantitative connection between high-redshift galaxies and
high column density gas and suggests that high-redshift damped Lyman-alpha
absorption systems trace lower star formation rate intensity regions of the
same galaxies detected in star light in the HDF and HDF--S.Comment: 28 pages, 9 figures; accepted for publication in the Astrophysical
Journa