38 research outputs found

    Mass production of polymer nano wires filled with metal nano particles

    Get PDF
    Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano scale systems to micro or macroscale elements is hampered by the lack of structural components that have both, nano and macroscale dimensions. The production of nano scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free standing polymer nano wires filled with different types of nano particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano scale thickness and a length of up to several centimeters. When dispersing nano particles within the film, the final arrangement is similar to a core shell geometry with mainly nano particles found in the core region and the polymer forming a dielectric jacket

    Supersymmetric QCD corrections to e+e−→tbˉH−e^+e^-\to t\bar{b}H^- and the Bernstein-Tkachov method of loop integration

    Full text link
    The discovery of charged Higgs bosons is of particular importance, since their existence is predicted by supersymmetry and they are absent in the Standard Model (SM). If the charged Higgs bosons are too heavy to be produced in pairs at future linear colliders, single production associated with a top and a bottom quark is enhanced in parts of the parameter space. We present the next-to-leading-order calculation in supersymmetric QCD within the minimal supersymmetric SM (MSSM), completing a previous calculation of the SM-QCD corrections. In addition to the usual approach to perform the loop integration analytically, we apply a numerical approach based on the Bernstein-Tkachov theorem. In this framework, we avoid some of the generic problems connected with the analytical method.Comment: 14 pages, 6 figures, accepted for publication in Phys. Rev.

    ARMA-models and their equivalences

    No full text

    Manipulation of small particles at solid liquid interface: light driven diffusioosmosis

    Get PDF
    The strong adhesion of sub-micron sized particles to surfaces is a nuisance, both for removing contaminating colloids from surfaces and for conscious manipulation of particles to create and test novel micro/nano-scale assemblies. The obvious idea of using detergents to ease these processes suffers from a lack of control: the action of any conventional surface-modifying agent is immediate and global. With photosensitive azobenzene containing surfactants we overcome these limitations. Such photo-soaps contain optical switches (azobenzene molecules), which upon illumination with light of appropriate wavelength undergo reversible trans-cis photo-isomerization resulting in a subsequent change of the physico-chemical molecular properties. In this work we show that when a spatial gradient in the composition of trans- and cis- isomers is created near a solid-liquid interface, a substantial hydrodynamic flow can be initiated, the spatial extent of which can be set, e.g., by the shape of a laser spot. We propose the concept of light induced diffusioosmosis driving the flow, which can remove, gather or pattern a particle assembly at a solid-liquid interface. In other words, in addition to providing a soap we implement selectivity: particles are mobilized and moved at the time of illumination, and only across the illuminated area
    corecore