190 research outputs found
Spin observables for the pd <-> pi+ t process around the Delta resonance
The proton analyzing power Ay0 and the deuteron tensor analyzing power T20
are evaluated for the pd pi+ t process, in the energy region around and
above the Delta resonance. These calculations extend a previous analysis of the
excitation function and differential cross-section, based on a model embodying
one-- and two-body p-wave absorption mechanisms and isobar excitation. The
three-nucleon bound state and the pd scattering state are evaluated through
Faddeev techniques for both the Bonn and Paris potentials. The spin variables
exhibit a greater sensitivity to the number of included three-nucleon partial
waves than the cross-sections, while the role played by the initial-- or
final-state interactions appears to be small. The results for the tensor
analyzing power at backward angles show a non-negligible dependence on the
potentials employed, consistently with what has been previously found for the
cross-sections. The calculation of spin observables gives a clear indication
that other reaction mechanisms (presumably s-wave two-body absorption) have to
be included in the model, in order to reproduce the experimental data below the
Delta-resonance, in analogy with the simpler pp pi+ d process.Comment: 14 pages, REVTeX, plus 6 figs., PostScript (PRC, to be published
Positive pion absorption on 3He using modern trinucleon wave functions
We study pion absorption on 3He employing trinucleon wave functions
calculated from modern realistic NN interactions (Paris, CD Bonn). Even though
the use of the new wave functions leads to a significant improvement over older
calculations with regard to both cross section and polarization data, there are
hints that polarization data with quasifree kinematics cannot be described by
just two-nucleon absorption mechanisms.Comment: 14 pages, 6 figure
Separated Kaon Electroproduction Cross Section and the Kaon Form Factor from 6 GeV JLab Data
The () reaction was studied as a function of
the Mandelstam variable using data from the E01-004 (FPI-2) and E93-018
experiments that were carried out in Hall C at the 6 GeV Jefferson Lab. The
cross section was fully separated into longitudinal and transverse components,
and two interference terms at four-momentum transfers of 1.00, 1.36 and
2.07 GeV. The kaon form factor was extracted from the longitudinal cross
section using the Regge model by Vanderhaeghen, Guidal, and Laget. The results
establish the method, previously used successfully for pion analyses, for
extracting the kaon form factor. Data from 12 GeV Jefferson Lab experiments are
expected to have sufficient precision to distinguish between theoretical
predictions, for example recent perturbative QCD calculations with modern
parton distribution amplitudes. The leading-twist behavior for light mesons is
predicted to set in for values of between 5-10 GeV, which makes data
in the few GeV regime particularly interesting. The dependence at fixed
and of the longitudinal cross section we extracted seems consistent
with the QCD factorization prediction within the experimental uncertainty
Polarization transfer in the d(epol,e' ppol)n reaction up to Q^2=1.61 (GeV/c)^2
The recoil proton polarization was measured in the d(epol,e' ppol)n reaction
in Hall A of the Thomas Jefferson National Accelerator Facility (JLab). The
electron kinematics were centered on the quasielastic peak (x_{Bj}~1) and
included three values of the squared four-momentum transfer, Q^2=0.43, 1.00 and
1.61 (GeV/c)^2. For Q^2=0.43 and 1.61 (GeV/c)^2, the missing momentum, p_m, was
centered at zero while for Q^2=1.00 (GeV/c)^2 two values of p_m were chosen: 0
and 174 MeV/c. At low p_m, the Q^2 dependence of the longitudinal polarization,
P_z', is not well described by a state-of-the-art calculation. Further, at
higher p_m, a 3.5 sigma discrepancy was observed in the transverse
polarization, P_x'. Understanding the origin of these discrepancies is
important in order to confidently extract the neutron electric form factor from
the analogous d(epol,e' npol)p experiment.Comment: 6 pages, 4 figures; updated text, figures and table
The pd <--> pi+ t reaction around the Delta resonance
The pd pi+ t process has been calculated in the energy region around the
Delta-resonance with elementary production/absorption mechanisms involving one
and two nucleons. The isobar degrees of freedom have been explicitly included
in the two-nucleon mechanism via pi-- and rho-exchange diagrams. No free
parameters have been employed in the analysis since all the parameters have
been fixed in previous studies on the simpler pp pi+ d process. The
treatment of the few-nucleon dynamics entailed a Faddeev-based calculation of
the reaction, with continuum calculations for the initial p-d state and
accurate solutions of the three-nucleon bound-state equation. The integral
cross-section was found to be quite sensitive to the NN interaction employed
while the angular dependence showed less sensitivity. Approximately a 4% effect
was found for the one-body mechanism, for the three-nucleon dynamics in the p-d
channel, and for the inclusion of a large, possibly converged, number of
three-body partial states, indicating that these different aspects are of
comparable importance in the calculation of the spin-averaged observables.Comment: 40 Pages, RevTex, plus 5 PostScript figure
Measurement of the Charged Pion Electromagnetic Form Factor
Separated longitudinal and transverse structure functions for the reaction
1H(e,eprime pi+)n were measured in the momentum transfer region Q2=0.6-1.6
(GeV/c)**2 at a value of the invariant mass W=1.95 GeV. New values for the pion
charge form factor were extracted from the longitudinal cross section by using
a recently developed Regge model. The results indicate that the pion form
factor in this region is larger than previously assumed and is consistent with
a monopole parameterization fitted to very low Q2 elastic data.Comment: 5 pages, 3 figure
Investigation of the Exclusive 3He(e,e'pp)n Reaction
Cross sections for the 3He(e,e'pp)n reaction were measured over a wide range
of energy and three- momentum transfer. At a momentum transfer q=375 MeV/c,
data were taken at transferred energies omega ranging from 170 to 290 MeV. At
omega=220 MeV, measurements were performed at three q values (305, 375, and 445
MeV/c). The results are presented as a function of the neutron momentum in the
final-state, as a function of the energy and momentum transfer, and as a
function of the relative momentum of the two-proton system. The data at neutron
momenta below 100 MeV/c, obtained for two values of the momentum transfer at
omega=220 MeV, are well described by the results of continuum-Faddeev
calculations. These calculations indicate that the cross section in this domain
is dominated by direct two-proton emission induced by a one-body hadronic
current. Cross section distributions determined as a function of the relative
momentum of the two protons are fairly well reproduced by continuum-Faddeev
calculations based on various realistic nucleon-nucleon potential models. At
higher neutron momentum and at higher energy transfer, deviations between data
and calculations are observed that may be due to contributions of isobar
currents.Comment: 14 pages, 1 table, 17 figure
Measurement of the Generalized Forward Spin Polarizabilities of the Neutron
The generalized forward spin polarizabilities and of
the neutron have been extracted for the first time in a range from 0.1 to
0.9 GeV. Since is sensitive to nucleon resonances and
is insensitive to the resonance, it is expected that the
pair of forward spin polarizabilities should provide benchmark tests of the
current understanding of the chiral dynamics of QCD. The new results on
show significant disagreement with Chiral Perturbation Theory
calculations, while the data for at low are in good agreement
with a next-to-lead order Relativistic Baryon Chiral Perturbation theory
calculation. The data show good agreement with the phenomenological MAID model.Comment: 5 pages, 2 figures, corrected typo in author name, published in PR
- …