757 research outputs found

    Indoor Environmental Quality (IEQ): A Comparison between TOPSIS- and PROMETHEE-Based Approaches for Indirect Eliciting of Category Weights

    Get PDF
    Indoor Environmental Quality (IEQ) has received a great deal of attention in recent years due to the relationship between worker comfort and productivity. Many academics have studied IEQ from both a building design and an IEQ assessment perspective. This latter line of research has mostly used direct eliciting to obtain weights assigned to IEQ categories such as thermal comfort, visual comfort, acoustic comfort, and indoor air quality. We found only one application of indirect eliciting in the literature. Such indirect eliciting operates without the need for imprecise direct weighing and requires only comfort evaluations, which is in line with the Industry 5.0 paradigm of individual, dynamic, and integrated IEQ evaluation. In this paper, we use a case study to compare the only indirect eliciting model already applied to IEQ, based on TOPSIS, to an indirect eliciting method based on PROMETHEE and to a classical direct eliciting method (AHP). The results demonstrate the superiority of indirect eliciting in reconstructing individual preferences related to perceived global comfort

    Urban and Architectural Identity of Mosul. An Analytical Background for City’s Reconstruction

    Get PDF
    The city of Mosul dramatically represents a paradigmatic case where a condition of pervasive destruction of the built environment has moved the scientific research towards the investigation of possible precautionary strategies in safeguarding those structural characteristics that define the identity of the city. The study here displayed evaluates the elements that compose the urban phenomenon as operational and proactive tools capable to suggest criteria for a critical reconstruction of the urban structure, to integrate a consolidate historical identity with a new architectural intervention. Specifically, the aim of this research consists of detecting how the city of Mosul, although being a city of Islamic foundation – and thus displaying specific morphological and typological characteristics – has developed peculiar aspects affected by other cultural, religious, and geographical factors. And that is recognizable, for instance, in the settlement relationship with the Tigris river, and, in particular, in the construction of a monumental riverfront that often deforms the typical structure of the enclosure, otherwise persistent in the Islamic settlements. Then, those processes identified at an urban level will be extended to a typological one, trying to identify possible relationships between buildings and urban form. As a result, we expect to rebuild a formal and settlement identity of the city of Mosul by combining its individual and peculiar ways of growth, both architectural and urban. And this would have the purpose of enriching the elements to be taken into consideration in the process of defining an operational methodology capable of leading the practice of design towards more aware and responsible ways in dealing with the reconstruction process

    Inter-firm exchanges, distributed renewable energy generation, and battery energy storage system integration via microgrids for energy symbiosis

    Get PDF
    Policymakers and entrepreneurs are aware that reducing energy waste and underutilization are mandatory to actually foster the green transition. Nevertheless, small-medium enterprises usually meet technical and over-whelming financial constraints. They are unable to make profits, become less energy-sensitive, and cut down on their emissions simultaneously. Industrial districts are a source of both wealth and GHG (greenhouse gas) emissions. Eco-industrial parks (EIPs) supply a suitable strategy to ease symbiotic exchanges among various organizations. Surplus electricity from larger, energy-autonomous companies will be a new input for more vulnerable ones. This type of district is challenging, and it can provide an unexplored opportunity to cooperate, invest in renewable energy sources, and form alliances. To better exploit underutilized energy in industrial districts, it is essential to explore energy symbiosis (ES), i.e., an energy-based perspective of industrial symbiosis. This study presents an original mixed-integer linear programming (MILP) optimization model that aims to identify possible inter-firm exchanges and introduce microgrid-based support for distributed renewable-energy generators (DREGs) and battery energy storage systems (BESS) over a one-year simulation period. The model simultaneously targets economic and ecological objectives. The paper compares two case studies, one with battery support and one without. The optimization model was tested using a case study and found to improve energy efficiency (with a 43.46% saving in energy costs) and reduce greenhouse gas emissions (with an 84.59% reduction in GHG) by facilitating symbiotic exchanges among SMEs in industrial districts. The inclusion of BESS support further enhanced the model's ability to utilize green and recovered energy. These findings have im-plications for policymakers, entrepreneurs, and SMEs seeking to transition to more sustainable energy practices. Future work could explore the applicability of the MILP optimization model in other contexts and the potential for scaling up the model to larger industrial districts

    Exposure to Air Pollution in Transport Microenvironments

    Get PDF
    People spend approximately 90% of their day in confined spaces (at home, work, school or in transit). During these periods, exposure to high concentrations of atmospheric pollutants can pose serious health risks, particularly to the respiratory system. The objective of this paper is to define a framework of the existing literature on the assessment of air quality in various transport microenvironments. A total of 297 papers, published from 2002 to 2021, were analyzed with respect to the type of transport microenvironments, the pollutants monitored, the concentrations measured and the sampling methods adopted. The analysis emphasizes the increasing interest in this topic, particularly regarding the evaluation of exposure in moving cars and buses. It specifically focuses on the exposure of occupants to atmospheric particulate matter (PM) and total volatile organic compounds (TVOCs). Concentrations of these pollutants can reach several hundreds of µg/m3 in some cases, significantly exceeding the recommended levels. The findings presented in this paper serve as a valuable resource for urban planners and decision-makers in formulating effective urban policies

    Empowering rural districts with Urban-Industrial Symbiosis: A multiobjective model for Waste-to-Energy cogeneration and hydrogen sustainable networks

    Get PDF
    The growing demand for sustainable energy sources and the need to mitigate greenhouse gas emissions have led to increased interest in developing efficient, cost-effective, and environmentally friendly industrial systems. This paper presents a multi-echelon multi-objective network design model for urban-industrial symbiosis, combining biogas and hydrogen production plants with locally sourced organic waste as feedstock. The integrated biogas-hydrogen system utilizes locally sourced agricultural and organic waste as feedstock, enhancing rural processes sustainability and resource efficiency. The model optimizes the location of industrial plants based on environmental and economic parameters, including transportation emissions, energy consumption, and carbon footprint. A case study set in Emilia Romagna validates the model, and a sensitivity analysis examines the impact of varying input parameters on the designed industrial park. Results demonstrate that the novel combined biogas-hydrogen system not only reduces greenhouse gas emissions but also produces hydrogen at a lower cost due to the utilization of excess power from the biogas cogeneration plant. This research has significant implications, offering a sustainable and cost-effective hydrogen source while promoting efficient supply chain management and strategic decision-making in the renewable energy sector. Further study might investigate system robustness against disruptive events, plant design, and the integration of additional renewable sources

    Complexity measurement in two supply chains with different competitive priorities

    Get PDF
    Complexity measurement based on the Shannon information entropy is widely used to evaluate variety and uncertainty in supply chains. However, how to use a complexity measurement to support control actions is still an open issue. This article presents a method to calculate the relative complexity, i.e., the relationship between the current and the maximum possible complexity in a Supply Chain. The method relies on unexpected information requirements to mitigate uncertainty. The article studies two real-world Supply Chains of the footwear industry, one competing by cost and quality, the other by flexibility, dependability, and innovation. The second is twice as complex as the first, showing that competitive priorities influence the complexity of the system and that lower complexity does not ensure competitivity

    Factors related to delayed treatment: A case report of a huge cutaneous horn and review of the literature

    Get PDF
    We present a case of a man with a giant cutaneous horn over his frontal region. This case has been presented for the size of the lesion, due to delayed treatment, and to illustrate the reasons why the growth of this lesion has been possible in a western country, in the 21st century. It was a solitary, not painful lesion which caused significant aesthetic problems. The diagnosis was based on an ultrasonographic study and the treatment of choice was a surgical excision. This case is an opportunity to review the literature about the cutaneous horns, to talk about the main causes of delayed diagnosis and treatment of cutaneous lesions and, to define the role of the specialist in the assessment of emotions and patient support
    • …
    corecore