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Abstract: Indoor Environmental Quality (IEQ) has received a great deal of attention in recent years
due to the relationship between worker comfort and productivity. Many academics have studied IEQ
from both a building design and an IEQ assessment perspective. This latter line of research has mostly
used direct eliciting to obtain weights assigned to IEQ categories such as thermal comfort, visual
comfort, acoustic comfort, and indoor air quality. We found only one application of indirect eliciting
in the literature. Such indirect eliciting operates without the need for imprecise direct weighing and
requires only comfort evaluations, which is in line with the Industry 5.0 paradigm of individual,
dynamic, and integrated IEQ evaluation. In this paper, we use a case study to compare the only
indirect eliciting model already applied to IEQ, based on TOPSIS, to an indirect eliciting method
based on PROMETHEE and to a classical direct eliciting method (AHP). The results demonstrate
the superiority of indirect eliciting in reconstructing individual preferences related to perceived
global comfort.

Keywords: indoor environmental quality; IEQ; indirect eliciting; TOPSIS; PROMETHEE; AHP

1. Introduction

The importance of Indoor Environmental Quality (IEQ) has grown substantially in
recent years, as it has been demonstrated that worker comfort impacts productivity [1].
Poor IEQ reduces self-reported work performance, measured cognitive performance, and
well-being of office workers by lowering their attention and motivation while enhancing
their tiredness [2]. From these findings, academics have designed architectures capable of
maximizing occupant comfort [3] while ensuring buildings’ sustainability and efficiency [4],
developed methods to assess IEQ and gauge differences in its evaluation, and developed
models to capture the relationship between occupant comfort and IEQ categories [5]. The
IEQ is obtained from categories that are evaluated individually, then aggregated into a final
score. These categories usually include [6] Thermal Comfort (TC), Visual Comfort (VC),
Acoustic Comfort (AC), and Indoor Air Quality (IAQ). However, other categories can be
included as well, such as water quality, vibrations, and electromagnetic field (EM) [7]. This
process usually involves multiple proxy variables for each category to be combined into
the final IEQ evaluation. Many papers have studied the underlying relationship between
these proxy variables and individual comfort, applying models such as linear regression [8],
nonlinear regression [9], PCA [10], and Analytic Hierarchic Process (AHP) [11]. All these
analyses took place in a Post-Occupancy Evaluation (POE) framework [12], in which
practitioners collect environmental variables related to AC, VC, TC, and IAQ as well as
the occupants’ personal preferences through standardized surveys [13]. For a full review
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of POE applications with a qualitative and quantitative assessment of the main factors
impacting the IEQ, interested readers can refer to [14]. Most applications following a POE
framework to assess the IEQ have applied direct eliciting, assuming that a decision-maker
such as the operator or the building occupant can effectively express preferences between
the categories involved. When AHP is applied, for example, an operator is asked to make
pairwise comparisons between different categories based on Saaty’s scale [15,16]. Making
such a comparisons among many categories can be cognitively demanding, an approach
that is antithetical to the human-centric concept of Industry 5.0 [17], which strives to reduce
operators’ cognitive effort while maximizing their comfort. To limit this cognitive effort,
indirect eliciting has been introduced to the field of MCDM [18,19] following this new
industrial revolution; it only requires the operator to evaluate a few experienced situations
in terms of general comfort without expressing direct preferences over IEQ categories. To
the best of our knowledge, only one previous contribution has applied indirect eliciting
to the IEQ evaluation [20], in which case the authors proposed an approach based on
the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [21]. The
scope of this paper is to apply the same indirect eliciting approach to a case study and
compare its performance in terms of reconstructed preferences with a different indirect
eliciting approach based on the Preference Ranking Organization METHod for Enrichment
of Evaluations (PROMETHEE). In particular, we applied the method proposed in [22],
which has never been applied to an IEQ evaluation before, and compared both indirect
eliciting methods to classic AHP direct eliciting [15,23]. The rest of this paper is structured
as follows: Section 2 provides a literature review of IEQ evaluation with a focus on direct
and indirect methods; Section 3 provides the mathematical foundation for the applied
models; Section 4 details the case study; and Section 5 presents our conclusions and future
research agenda.

2. Literature Review

IEQ, as per the American Society of Heating Refrigeration and Air Conditioning Engi-
neers definition, is “a perceived indoor experience about the building indoor environments
that includes aspects of design, analysis, and operation of energy efficient, healthy and com-
fortable buildings” [24]. IEQ has been studied extensively in many of its aspects, such as
occupant acceptance [25–27], productivity [27], dynamic Life Cycle Assessment (LCA) [28],
and green building performance [29]. The IEQ is evaluated by collecting different types
of data to be aggregated differently depending on the specific method used. These data
can be objective, in which case they refer to physical measurements (proxy IEQ variables);
obtained in a controlled environment, in which case they relate to the main four IEQ cate-
gories (TC, VC, AC, IAQ); as-is; or through derived variables. Thermal comfort evaluation,
for example, is usually carried out following the UNI-EN ISO 7730:2006 standard [30],
which requires evaluation of the Predicted Mean Vote (PMV) and Predicted Percentage
of Dissatisfied (PPD) following Fanger’s method [31]. To obtain these derived variables,
environmental IEQ variables such as air temperature, relative humidity, mean radiant tem-
perature, and relative air velocity must be collected. At the same time the method requires
the collection of individual IEQ variables such as clothing insulation and metabolic activity.
With these inputs, a derived variable can be calculated for each operator or occupant. For
other categories different environmental and individual IEQ variables can then be collected
to provide a unique IEQ evaluation. Subjective variables related to the occupants’ level
of satisfaction and comfort can be collected; in this case, IEQ models look for correlations
between the objective IEQ variables in each category and the occupants’ subjective comfort
levels. IEQ models can be categorized based on the type of method exploited to find this
correlation [32], allowing IEQ models to be classified based on subjective–objective and
objective criteria. The first category refers to IEQ evaluations in which subjective mea-
surement are collected from operators and occupants and in which relationships between
objective measurements are investigated. Objective criteria models, on the other hand,
do not collect any subjective measurements, and rely only on the collection of objective
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variables. In this type of IEQ model, the category evaluation is obtained by comparing
measured values with a pre-defined set of criteria to obtain a class for each category, such
as “healthy”, “non-healthy”, or “uncertain” [33]; then, a final IEQ evaluation with different
weighting methods is obtained. Within this framework assessment, class limits, which are
the thresholds that link a class to a category, are considered controversial, and vary widely
among different studies [32]. For this reason, and because our research is more in line with
the subjective–objective class of models, we focus our review on this stream.

In subjective–objective IEQ methods, the final score is calculated by weighting the
different categories using, for example, multivariate regression [5] to link occupants comfort
with controlled variables. A common approach of this class of models is the use of surveys
to collect perceived comfort at both the category level and overall; then, the relationships
between controlled variables and category comfort and between category comfort and
overall comfort are investigated.

The two different relationships can be found using the same or different mathematical
models, and can be defined as follows:

1. Ra: the relationship between the perceived comfort in each category (AC, VC, TC,
IAQ) and the controlled variables in each category.

2. Rb: the relationship between the final IEQ evaluation and the comfort of each category
in the weighting of IEQ categories (note that not all papers account for a weighting
procedure).

For both Ra and Rb, different types of regressions and MCDM can be applied. In
this line of research, one of the first published papers [8] included a POE protocol with a
real-time survey as well as a collection of environmental variables. The authors weighted
different criteria equally (i.e., no weighting for Rb) and investigated Ra using a linear
regression, one of the most common methods for this scope. Using a similar approach, Mui
and Chan [34] exploited a linear regression for Ra, while Rb was investigated using multiple
linear regression on TC, AC, IAQ, and VC. Following the trend of using regressions to
interpret Ra and Rb, in [35], as in [34], the authors applied a linear regression for Ra while
exploiting a logistic regression for Rb. In these papers the same type of regression was used
for all the categories involved in Ra; however, this is not a general rule. In other papers
the authors have exploited different models for Ra in the different categories, suggesting
that the relationship between controlled variables and comfort depends on the comfort
category considered. In [5], for example, the authors exploited a linear regression for AC
and IAQ while applying a nonlinear regression to TC and VC. At the same time, the authors
applied multiple nonlinear regression for Rb. In a similar way, in [9] the authors exploited
a linear regression for VC and nonlinear regressions for AC, TC, and IAQ while a multiple
nonlinear regression was used to fit Rb. Another stream of research in this field does not
use regression, instead applying MCDM for Ra and/or Rb. In Chiang and Lai [33] the
authors exploited AHP to weight both essential indicators in each IEQ category, Ra, and to
weight the IEQ categories themselves, Rb. In a similar way, in [11] the authors applied AHP
to Rb to derive the weights for IEQ categories. All the cited papers applying MCDM have
exploited a direct eliciting approach. This is true for MCDM applied to Occupational Health
and Safety Risk Assessment (OHSRA), where the use of MCDM is common practice [36],
as demonstrated in [37]. To the best of our knowledge, only in [20] have the authors
applied indirect eliciting for IEQ evaluation. They found individual weights for the IEQ
categories using indirect eliciting based on TOPSIS, and demonstrated the superiority of
indirect eliciting compared to AHP in reconstructing operator/occupant preferences. The
lack of application of indirect eliciting to IEQ is unexpected, as different types of relations
have been tested to interpret individual perceived comfort, while an alternative requiring
less cognitive effort has been mostly ignored. Here, in line with the only work that has
exploited indirect eliciting, we test the indirect eliciting method proposed in [20] against a
modification of the indirect eliciting method applied in [38–40] and against classical AHP
as a benchmark for the most common direct eliciting method.
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3. Mathematical Models

In this section, we present the mathematical models applied in the case study;
Section 3.1 presents the indirect eliciting approach based on TOPSIS, while Section 3.2
presents the indirect eliciting based on PROMETHEE. Each model focuses on K IEQ vari-
ables associated with T time steps, defined as Skt.

3.1. TOPSIS

Classic TOPSIS [21,41] uses the following algorithm for cost criteria:

1. The risk variables Skt are normalized to obtain normalized risk variables for each time
step nkt:

nkt =
Skt√

∑T
t=1 S2

kt

∀k = 1, . . . , K ∀t = 1, . . . , T (1)

2. The unweighted ideal a+k and anti-ideal solution a−k are computed for each IEQ
variable:

a+k = min(nk1, . . . , nkt) ∀k = 1, . . . , K (2)

a−k = max(nk1, . . . , nkt) ∀k = 1, . . . , K (3)

3. The normalized risk variables are weighted to obtain weighted normalized risk
variables for each time step ckt:

ckt = wk·nkt ∀k = 1, . . . , K ∀t = 1, . . . , T (4)

where the weights must add up to one:

∑K
k=1 wk = 1 (5)

4. The Euclidean distances from the ideal d+t and anti-ideal d−t solutions are:

d+t =
√

∑K
k=1

(
ckt − wk·a+k

)2 (6)

d−t =
√

∑K
k=1

(
ckt − wk·a−k

)2 (7)

5. The final IEQ values rt for each time step are:

rt =
d−t

d+t + d−t
(8)

In our hypothesis, the IEQ categories weights wk are unknown and the eliciting
procedure optimizes them by solving the following maximization problem [20] where, for

each time step, a subjective IEQ evaluation has been collected

S1t
. . .
SKt

 �
S1t′

. . .
SKt′

:

max ∑[S1t
. . .
SKt

]
�

[S1t′

. . .
SKt′

] ln
(

1

1 + e−(rt−rt′ )

)
(9)

s.t.
0 ≤ wk ∀k = 1, . . . , K (10)
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Such an optimization problem does not scale the weights, which must be corrected in
order for them to add up to one:

wk
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wk

∑K
k=1 wk
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3.2. PROMETHEE

Classic PROMETHEE [39] adheres to the following algorithm for benefit criteria:

1. The differences dktt′ between risk variables in different time steps (Skt and Skt′ for time
steps t and t′) are computed for each IEQ category K:

dktt′ = Skt − Skt′ ∀t = 1, . . . , T ∀t′ = 1, . . . , T (12)

2. Each difference is transformed through a different preference function for each IEQ
category to obtain pktt′ :

pktt′ = fk(dktt′) (13)

With pktt’ ∈ [0, 1]. In this paper, the preference function is linear:

pktt′ =


1 i f dktt′ ≥ maxt,t′(dktt′)
maxt,t′(dktt′)−dktt′

maxt,t′(dktt′)
i f 0 ≤ dktt′ ≤ maxt,t′(dktt′)

0 i f dktt′ ≤ 0

(14)

3. The transformed differences are weighted over the IEQ categories to obtain a single
stt′ for each pair of time steps t and t′:

stt′ = ∑K
k=1 wk·pktt′ (15)

4. Leaving φ−t and entering φ+
t , flows are then computed for each time step:

φ+
t = ∑T

t′=1 stt′ (16)

φ−t = ∑T
t=1 stt′ (17)

5. The net flows φt are obtained as follows:

φt = φ+
t − φ−t (18)

In our hypothesis, the weights are unknown and the eliciting procedure optimizes
them by solving the following maximization problem, where a subjective IEQ evaluation

has been collected for each time step

S1t
. . .
SKt

 �
S1t′

. . .
SKt′

:

max ∑[S1t
. . .
SKt

]
�

[S1t′

. . .
SKt′

] ln
(

1

1 + e−(φt−φt′ )

)
(19)

s.t.
0 ≤ wk ∀k = 1, . . . , K (20)

This methodology is similar to the one proposed in [38], and is computationally
faster [22].
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The two proposed models are general, and can be applied to other contexts to obtain
indirectly elicited optimized weights able to reconstruct operator or occupant comfort
based on the collected variables and on their global comfort perception.

4. Case Study
4.1. Data Collection

The case study took place in Reggio Emilia, Italy, in March 2023 and considered an
administration office located in a research center with four operators. The office area is
5.68 m × 11.88 m and the operators work at the same shared central desk in an open
environment. To obtain an IEQ evaluation, a set of four IEQ categories (AC, VC, TC, and
IAQ) was defined and one or more proxy variables were collected for each category through
low-cost sensors. Because low-cost sensors were exploited, only certain proxy variables for
each IEQ category were collected. In particular, we collected the following variables for
each category:

• TC: we collected the air temperature and relative humidity with a sensor placed
1.1 m from the ground and 1.5 m from the shared desk. In order to calculate PMV,
which is the classic measure of comfort for TC as prescribed in the UNI-EN ISO
standard 7730:2006 [30], the mean radiant temperature, relative air velocity, clothing
insulation, and metabolic activity should all be collected. Regarding the mean radiant
temperature, a default value of 25◦ was used, as the building is new and the walls are
well insulated. For air velocity, a default value of 0.1 m/s was used, as the addendum
to ASHRAE 55 suggests the use of the PMV model with air speeds below 0.20 m/s [40].
For the metabolic rate, a value of 1.2 met was used for all operators, with a clothing
insulation level of 1.2 clo for everyone except Operator 3, whose clothing was lighter
and equal to 1 clo.

• VC: we collected the desk surface illuminance.
• AC: we collected the A-weighted daily noise exposure with a phonometer placed

1.2 m from the ground.
• IAQ: we collected the pm2.5 concentration with a sensor 1.1 m from the ground and

1.5 m from the shared desk.

The IEQ variables collected for each IEQ category and the sensor characteristics (unit
of measure, resolution, and measurement range) are summarized in Table 1.

Table 1. Collected IEQ variables and sensor characteristics.

IEQ Category IEQ Variable Unit of Measure Resolution Measurement
Range

IAQ pm2.5 concentration µg
m3 1 µg

m3 [0, 1000]

VC Desk surface
illuminance lx 0.1 lx [0, 120,000]

TC
Air temperature ◦C 0.1 ◦C [−40, 85]

Relative Humidity RH 0.1 RH [0, 100]

AC

A-weighted
equivalent

continuous sound
pressure level

dB 0.1 dB [22, 136]

4.2. Data Analysis

The environmental working conditions of the four operators were monitored for 8 h,
with a one-hour lunch break. The frequency of this collection process was high (e.g., one
second) and continued for the whole duration of the analysis. A time step of one hour was
selected and piece-wise linear segmentation [41,42] was implemented to obtain segments
from these high-frequency data; this process removes most of the data variability. The mean
value of each segmented variable was associated with its corresponding time step and the



Toxics 2023, 11, 701 7 of 14

IEQ variables referring to the same IEQ category were transformed into Skt IEQ-derived
variables, where k is the IEQ category and t is the time step. The humidity (one of the TC
variables), for example, was collected once every second; this high-frequency IEQ variable
was then segmented thorough piece-wise linear regression, and the mean value of this
segmented function was averaged for each hour t. As an example, Figure 1 shows this
segmentation process applied to humidity for the day under evaluation. This process was
repeated for the temperature and the two IEQ variables were transformed for a given an
operator’s features into a single derived IEQ variable (PMV) associated with the TC IEQ
category. This process was replicated for all the other IEQ variables to obtain an Skt-derived
variable for each IEQ category k and time step t. If an IEQ category was associated with a
single IEQ variable, that variable was used after the segmentation and averaging process
instead of a derived variable.
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Figure 1. Humidity IEQ variable segmentation.

Each IEQ (derived) variable was associated with an acceptability range obtained from
different Italian standards; however, this range can be adapted to different regulations
depending on the county where the evaluation takes place:

• The pm2.5 concentration should fall below 40 µg
m3 [43].

• The PMV is dimensionless, and should fall between −2 and 2, with zero representing
comfort [30].

• The desk surface illuminance should be at least 300 lux for filling and copying activi-
ties [44].

• The A-weighted daily noise exposure level should fall below 87 dB [45].

Considering these ranges, the Skt values cannot be analyzed as-is, and must be trans-
formed as follows:

• The pm2.5 concentration is used as-is.
• The PMV is substituted by its distance from 0 in absolute value.
• The desk surface illuminance is reduced by 300 lx, and this distance is then used as an

absolute value.
• The A-weighted hourly noise exposure level is used as-is.

Following these transformations, all the IEQ (derived) variables must be minimized.
For each time step t, each operator provides a subjective IEQ evaluation on a scale

from 1 to 5, where 5 represents ideal conditions. These evaluations are used to order the
different time steps comfort values:
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S1t
. . .
SKt

 �
S1t′

. . .
SKt′

 (21)

where, in this case, the operator ranked the comfort in time step t higher than that in time
step t′.

These relations are used with the mathematical methods introduced in the previous
section to obtain a weight wi for each IEQ (derived) variable. These weights are neces-
sary to evaluate new IEQ (derived) variables values without the need for the operator’s
intervention.

The collected variables led to the hourly IEQ variables in Table 2; shared variables are
only reported once, while the PMV is computed individually for each operator.

Table 2. Hourly IEQ (derived) variables.

Time PMV
Operator 1

PMV
Operator 2

PMV
Operator 3

PMV
Operator 4

Desk
Surface

Illuminance
pm2.5

A-Weighted Equivalent
Continuous Sound

Pressure Level

9 0.191 0.191 −0.050 0.191 592.7 9.3 46.4

10 0.373 0.374 0.162 0.373 585.2 8.4 46.6

11 0.452 0.453 0.250 0.452 577.8 7.6 46.4

12 0.508 0.508 0.309 0.508 570.3 6.7 45.1

14 0.656 0.657 0.471 0.656 481.3 5.4 44.9

15 0.654 0.654 0.468 0.654 480.7 5.2 47.8

16 0.601 0.601 0.409 0.601 480.1 4.9 41.5

17 0.554 0.554 0.358 0.554 479.4 4.6 40.7

Every hour, each operator provided a subjective global comfort evaluation, shown
in Figure 2, ranking their global comfort from 1 to 5, where 5 represents ideal conditions.
These subjective evaluations were required for both the indirect eliciting and to analyze the
ability to reconstruct the operators’ preferences.
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In addition, at the end of the 8 h each operator filled in an AHP preference matrix
comparing the IEQ categories (Tables 3–6) in order to obtain directly elicited subjective
categories weights. This direct eliciting is only needed as a benchmark with the indirect elic-
iting approach, which does not require it. In total, each operator provides six comparisons,
for a total of 24 subjective comparisons among IEQ categories for the four operators.

Table 3. Operator 1 AHP preference matrix.

pm2.5 PMV Desk Surface
Illuminance

A-Weighted
Equivalent Continuous
Sound Pressure Level

pm2.5 1 3 1
3

1
3

PMV 1
3 1 1 2

Desk surface
illuminance 3 1 1 3

A-weighted equivalent
continuous sound

pressure level
3 1

2
1
3 1

Table 4. Operator 2 AHP preference matrix.

pm2.5 PMV Desk Surface
Illuminance

A-Weighted
Equivalent Continuous
Sound Pressure Level

pm2.5 1 4 4 1
5

PMV 1
4 1 1 1

5

Desk surface
illuminance

1
4 1 1 1

5

A-weighted equivalent
continuous sound

pressure level
5 5 5 1

Table 5. Operator 3 AHP preference matrix.

pm2.5 PMV Desk Surface
Illuminance

A-Weighted
Equivalent Continuous
Sound Pressure Level

pm2.5 1 1
5 3 3

PMV 5 1 5 5

Desk surface
illuminance

1
3

1
5 1 2

A-weighted equivalent
continuous sound

pressure level

1
3

1
5

1
2 1
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Table 6. Operator 4 AHP preference matrix.

pm2.5 PMV Desk Surface
Illuminance

A-Weighted
Equivalent Continuous
Sound Pressure Level

pm2.5 1 1
4 3 3

PMV 4 1 4 4

Desk surface
illuminance

1
3

1
4 1 3

A-weighted equivalent
continuous sound

pressure level

1
3

1
4

1
3 1

From these data, following the mathematical models’ algorithms reported in
Section 3.2, we obtained the following:

• Four sets of weights from the AHP, one for each operator from their AHP preference
matrix.

• Four optimized sets of weights for TOPSIS, one for each operator from the hourly IEQ
(derived) variables and the subjective evaluations on global comfort.

• Four optimized sets of weights for PROMETHEE, one for each operator from the
hourly IEQ (derived) variables and the subjective evaluations on global comfort.

• To solve the optimization problems, the subjective IEQ evaluations were converted
into nonredundant relations. For example, Operator 1 evaluated the hour 9 IEQ as 3,
hour 10 IEQ as 2, and hour 11 IEQ as 4; thus, all possible relations are:

S11
S21
S31
S41

 �


S12
S22
S32
S42

 (22)


S13
S23
S33
S43

 �


S12
S22
S32
S42

 (23)


S13
S23
S33
S43

 �


S11
S21
S31
S41

 (24)

While


S13
S23
S33
S43

 �


S12
S22
S32
S42

 is redundant, and as such was not used in the optimization

problems.
From these weights, we then computed the following:

• An IEQ evaluation for each operator and hour, using the AHP weights and the hourly
IEQ (derived) variables in TOPSIS.

• An IEQ evaluation for each operator and hour, using the AHP weights and the hourly
IEQ (derived) variables in PROMETHEE.

• An optimized IEQ evaluation for each operator and hour, using the optimized TOPSIS
weights and the hourly IEQ (derived) variables in TOPSIS.

• An optimized IEQ evaluation for each operator and hour, using the optimized
PROMETHEE weights and the hourly IEQ (derived) variables in PROMETHEE.
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For each of these four methods it is possible to check how many of the nonredundant
relations that we aimed to verify were upheld. Here, the ratio of nonverified relations is
called the error rate, and is proposed in Table 7 for each operator and tested method.

Table 7. Error rates for different methods.

AHP
TOPSIS

AHP
PROMETHEE TOPSIS PROMETHEE

Operator 1 0.22 0.22 0.22 0.11

Operator 2 1 0.94 0 0

Operator 3 1 0.67 0.33 0.33

Operator 4 0.25 0.33 0.25 0.25

Even if the data are too limited for a statistical test, the directly elicited AHP weights in
both TOPSIS and PROMETHEE provide substantially higher error rates than the indirectly
elicited ones obtained through the optimized methods. A boxplot is depicted in Figure 3,
where it can be seen that the variability in the error rates with the optimized methods is
significantly less pronounced.
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Figure 4 shows a correlation matrix highlighting the correlation between methods
and weights. The figure shows a strong positive correlation between optimized TOPSIS
and PROMETHEE weights, while the AHP ones are uncorrelated. To obtain Figure 4, only
the operators’ PMV, desk surface illuminance, and pm2.5 weights were used, while the
A-weighted hourly noise exposure weight was discarded, as it was correlated with them
by design (each set of weights adds up to 1).
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5. Conclusions

In this paper, we applied two different indirect eliciting methods, one based on TOPSIS,
presented in [20], and the other on PROMETHEE, never before applied in this field [22,38]
to obtain individual weights for four IEQ categories. With these weights obtained, a
dynamic and individual IEQ evaluation was determined for each operator and hour. This
solution provides high flexibility, and thanks to the segmentation phase it can be used with
multiple non-aligned sensors. Another important aspect of the proposed solution is the
individuality of the IEQ criteria weights, which, in line with the human-centric paradigm
of Industry 5.0 [46], takes into account personal preferences. These two indirect eliciting
methods can be applied to different environments, industrial or not, following the proposed
framework in which control variables are collected from different non-aligned sensors and
personal preferences around overall comfort. Here, these methods were applied in a case
study involving four different operators in an administrative office and tested against a
classical direct eliciting method, namely, AHP. The case study considered all the relevant
IEQ categories as per the literature: AC, TC, VC, and IAQ. The case study results show
the superiority of the two indirect eliciting methods in reconstructing operator preference;
thus, our findings can be summarized as follows:

• AHP weights are unreliable, and can result in very high error rates when reconstructing
operators’ preferences (error rates of up to 100% for AHP-TOPSIS for two of the
operators).

• Indirect elicited TOPSIS and PROMETHEE optimized weights provide similar high-
quality results, with low error rates compared to AHP.

• The similarity between optimized TOPSIS and PROMETHEE results can be explained
by the high correlation between their weights.

Future research in this direction could include testing of the proposed models on a
larger scale involving more operators and more collection days as well as different environ-
ments and seasons, and the inclusion of other direct eliciting methods as a benchmark in
addition to AHP.
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