273 research outputs found

    Development of a new ultra sensitive real-time PCR assay (ultra sensitive RTQ-PCR) for the quantification of HBV-DNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Improved sensitivity of HBV-DNA tests is of critical importance for the management of HBV infection. Our aim was to develop and assess a new ultra sensitive in-house real-time PCR assay for HBV-DNA quantification (ultra sensitive RTQ-PCR).</p> <p>Results</p> <p>Previously used HBV-DNA standards were calibrated against the WHO 1<sup>st </sup>International Standard for HBV-DNA (OptiQuant<sup>® </sup>HBV-DNA Quantification Panel, Accrometrix Europe B.V.). The 95% and 50% HBV-DNA detection end-point of the assay were 22.2 and 8.4 IU/mL. According to the calibration results, 1 IU/mL equals 2.8 copies/mL. Importantly the clinical performance of the ultra sensitive real-time PCR was tested similar (67%) to the Procleix Ultrio discriminatory HBV test (dHBV) (70%) in low-titer samples from patients with occult Hepatitis B. Finally, in the comparison of ultra sensitive RTQ-PCR with the commercially available COBAS TaqMan HBV Test, the in-house assay identified 94.7% of the 94 specimens as positive versus 90.4% identified by TaqMan, while the quantitative results that were positive by both assay were strongly correlated (<it>r </it>= 0.979).</p> <p>Conclusions</p> <p>We report a new ultra sensitive real time PCR molecular beacon based assay with remarkable analytical and clinical sensitivity, calibrated against the WHO 1<sup>st </sup>International standard.</p

    Turnip mosaic potyvirus probably first spread to Eurasian brassica crops from wild orchids about 1000 years ago

    Get PDF
    Turnip mosaic potyvirus (TuMV) is probably the most widespread and damaging virus that infects cultivated brassicas worldwide. Previous work has indicated that the virus originated in western Eurasia, with all of its closest relatives being viruses of monocotyledonous plants. Here we report that we have identified a sister lineage of TuMV-like potyviruses (TuMV-OM) from European orchids. The isolates of TuMV-OM form a monophyletic sister lineage to the brassica-infecting TuMVs (TuMV-BIs), and are nested within a clade of monocotyledon-infecting viruses. Extensive host-range tests showed that all of the TuMV-OMs are biologically similar to, but distinct from, TuMV-BIs and do not readily infect brassicas. We conclude that it is more likely that TuMV evolved from a TuMV-OM-like ancestor than the reverse. We did Bayesian coalescent analyses using a combination of novel and published sequence data from four TuMV genes [helper component-proteinase protein (HC-Pro), protein 3(P3), nuclear inclusion b protein (NIb), and coat protein (CP)]. Three genes (HC-Pro, P3, and NIb), but not the CP gene, gave results indicating that the TuMV-BI viruses diverged from TuMV-OMs around 1000 years ago. Only 150 years later, the four lineages of the present global population of TuMV-BIs diverged from one another. These dates are congruent with historical records of the spread of agriculture in Western Europe. From about 1200 years ago, there was a warming of the climate, and agriculture and the human population of the region greatly increased. Farming replaced woodlands, fostering viruses and aphid vectors that could invade the crops, which included several brassica cultivars and weeds. Later, starting 500 years ago, inter-continental maritime trade probably spread the TuMV-BIs to the remainder of the world

    Increased Genetic Diversity of HIV-1 Circulating in Hong Kong

    Get PDF
    HIV-1 group M strains are characterized into 9 pure subtypes and 48 circulating recombinant forms (CRFs). Recent studies have identified the presence of new HIV-1 recombinants in Hong Kong and their complexity continues to increase. This study aims to characterize the HIV-1 genetic diversity in Hong Kong. Phylogenetic analyses were performed by using HIV-1 pol sequences including protease and partial reverse transcriptase isolated from 1045 local patients in Hong Kong from 2003 to 2008. For the pol sequences with unassigned genotype, the evidence of recombination was determined by using sliding-window based bootscan plots and their env C2V3 region were also sequenced. Epidemiological background of these patients was further collected. The pol phylogenetic analyses highlighted the extent of HIV-1 genetic diversity in Hong Kong. Subtype B (450/1045; 43.1%) and CRF01_AE (469/1045; 44.9%) variants were clearly predominant. Other genotypes (126/1045; 12.1%) including 3 defined subtypes, 10 CRFs, 1 unassigned subtype and 33 recombinants with 11 different mosaic patterns were observed. Recombinants of subtype B and CRF01_AE were mainly found among local Chinese MSM throughout 2004 to 2008, while the CRF02_AG and subtype G recombinants were circulating among non-Chinese Asian population in Hong Kong through heterosexual transmission starting from 2008. Our study demonstrated the complex recombination of HIV-1 in Hong Kong and the need in developing surveillance system for tracking the distribution of new HIV-1 genetic variants

    Genetic Analysis of a Novel Human Adenovirus with a Serologically Unique Hexon and a Recombinant Fiber Gene

    Get PDF
    In February of 1996 a human adenovirus (formerly known as Ad-Cor-96-487) was isolated from the stool of an AIDS patient who presented with severe chronic diarrhea. To characterize this apparently novel pathogen of potential public health significance, the complete genome of this adenovirus was sequenced to elucidate its origin. Bioinformatic and phylogenetic analyses of this genome demonstrate that this virus, heretofore referred to as HAdV-D58, contains a novel hexon gene as well as a recombinant fiber gene. In addition, serological analysis demonstrated that HAdV-D58 has a different neutralization profile than all previously characterized HAdVs. Bootscan analysis of the HAdV-D58 fiber gene strongly suggests one recombination event

    Classification of HIV-1 Sequences Using Profile Hidden Markov Models

    Get PDF
    Accurate classification of HIV-1 subtypes is essential for studying the dynamic spatial distribution pattern of HIV-1 subtypes and also for developing effective methods of treatment that can be targeted to attack specific subtypes. We propose a classification method based on profile Hidden Markov Model that can accurately identify an unknown strain. We show that a standard method that relies on the construction of a positive training set only, to capture unique features associated with a particular subtype, can accurately classify sequences belonging to all subtypes except B and D. We point out the drawbacks of the standard method; namely, an arbitrary choice of threshold to distinguish between true positives and true negatives, and the inability to discriminate between closely related subtypes. We then propose an improved classification method based on construction of a positive as well as a negative training set to improve discriminating ability between closely related subtypes like B and D. Finally, we show how the improved method can be used to accurately determine the subtype composition of Common Recombinant Forms of the virus that are made up of two or more subtypes. Our method provides a simple and highly accurate alternative to other classification methods and will be useful in accurately annotating newly sequenced HIV-1 strains

    Recombination and positive selection identified in complete genome sequences of Japanese encephalitis virus

    Get PDF
    The mosquito-borne Japanese encephalitis virus (JEV) causes encephalitis in man but not in pigs. Complete genomes of a human, mosquito and pig isolate from outbreaks in 1982 and 1985 in Thailand were sequenced with the aim of identifying determinants of virulence that may explain the differences in outcomes of JEV infection between pigs and man. Phylogenetic analysis revealed that five of these isolates belonged to genotype I, but the 1982 mosquito isolate belonged to genotype III. There was no evidence of recombination among the Thai isolates, but there were phylogenetic signals suggestive of recombination in a 1994 Korean isolate (K94P05). Two sites of the genome under positive selection were identified: codons 996 and 2296 (amino acids 175 of the non-structural protein NS1 and 24 of NS4B, respectively). A structurally significant substitution was seen at NS4B position 24 of the human isolate compared with the mosquito and pig isolates from the 1985 outbreak in Thailand. The potential importance of the two sites in the evolution and ecology of JEV merits further investigation

    Molecular Epidemiology of HIV-1 Subtypes in India: Origin and Evolutionary History of the Predominant Subtype C

    Get PDF
    This thesis describes the translational genomics of HIV-1subtype C in India from its origin to therapeutic response with the aim to improve our knowledge for better therapeutic and preventive strategies to combat HIV/AIDS. In a systemic approach, we identified the molecular phylogeny of HIV-1 subtypes circulating in India and the time to most recent common ancestors (tMRCA) of predominant HIV-1 subtype C strains. Additionally, this thesis also studied drug resistance mutations in children, adolescents and adults, the role of host factors in evolution of drug resistance, and population dynamics of viremia and viral co-receptor tropism in perinatal transmission. Finally, the long term therapeutic responses on Indian national first-line antiretroviral therapy were also studied. In Paper I, we reported an increase in the HIV-1 recombinant forms in the HIV-1 epidemiology using a robust subtyping methodology. While the study confirmed HIV- 1 subtype C as a dominant subtype, its origin was dated back to the early 1970s from a single or few genetically related strains from South Africa, whereafter, it has evolved independently. In Paper II, the lethal hypermutations due to the activity of human apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (hA3G) was significantly associated with antiretroviral therapy (ART) failure in Indian HIV-1 subtype C patients. The presence of M184I and M230I mutations were observed due to the editing of hA3G in the proviral compartment but stop codons were also found in the open reading frames and the same drug resistance mutations were absent in plasma virus. Therefore, it is unlikely that the viral variants which exhibit hypermutated sequences and M184I and/or M230I will mature and expand in vivo and hence are unlikely to have any clinical significance. The high concordance of drug resistance genotyping in the plasma and proviral compartments in therapy-naïve patients, gives weight to the idea of using whole blood for surveillance of drug resistance mutations which precludes logistic challenges of cold chain transport. In Papers III and IV, we identified a substantial proportion of HIV-1 subtype C perinatally-infected older children who had a high burden of plasma viremia but also had high CD4+ T-cell counts. In addition, older children with HIV-1 subtype C infection presented a high prevalence of predicted X4 and R5/X4 tropic strains which indicates that HIV-1 subtype C strains required longer duration of infection and greater disease progression to co-receptor transition from R5- to X4-tropic strains (IV). Our studies also indicate that transmitted drug resistance is low among Indian HIV-1 infected children, adolescents (III) and adults (II). In Paper V, in a longitudinal cohort study, a good long-term response to the Indian national first-line therapy for a median of nearly four years with 2.8% viral failure, indicating the overall success of the Indian ART program. Our study also showed that three immunologically well patients with virological rebound and major viral drug resistance mutations (M184V, K103N and Y181C) during one study visit had undetectable viral load at their next visit. These findings suggest that use of multiple parameters like patients’ immunological (CD4+ T-cell count), virological (viral load) and drug resistance data should all be used to optimize the treatment switch to second line therapy. In conclusion, this translational genomics study enhances our knowledge about the HIV-1 subtype C strains circulating in India which are genetically distinct from prototype African subtype C strains. Considerably more research using appropriate models need to be performed to understand the phenotypic and biological characteristics of these strains to guide efficient disease intervention and management strategies

    Computational and Serologic Analysis of Novel and Known Viruses in Species Human Adenovirus D in Which Serology and Genomics Do Not Correlate

    Get PDF
    In November of 2007 a human adenovirus (HAdV) was isolated from a bronchoalveolar lavage (BAL) sample recovered from a biopsy of an AIDS patient who presented with fever, cough, tachycardia, and expiratory wheezes. To better understand the isolated virus, the genome was sequenced and analyzed using bioinformatic and phylogenomic analysis. The results suggest that this novel virus, which is provisionally named HAdV-D59, may have been created from multiple recombination events. Specifically, the penton, hexon, and fiber genes have high nucleotide identity to HAdV-D19C, HAdV-D25, and HAdV-D56, respectively. Serological results demonstrated that HAdV-D59 has a neutralization profile that is similar yet not identical to that of HAdV-D25. Furthermore, we observed a two-fold difference between the ability of HAdV-D15 and HAdV-D25 to be neutralized by reciprocal antiserum indicating that the two hexon proteins may be more similar in epitopic conformation than previously assumed. In contrast, hexon loops 1 and 2 of HAdV-D15 and HAdV-D25 share 79.13 and 92.56 percent nucleotide identity, respectively. These data suggest that serology and genomics do not always correlate

    Genetic characterization of 2008 reassortant influenza A virus (H5N1), Thailand

    Get PDF
    In January and November 2008, outbreaks of avian influenza have been reported in 4 provinces of Thailand. Eight Influenza A H5N1 viruses were recovered from these 2008 AI outbreaks and comprehensively characterized and analyzed for nucleotide identity, genetic relatedness, virulence determinants, and possible sites of reassortment. The results show that the 2008 H5N1 viruses displayed genetic drift characteristics (less than 3% genetic differences), as commonly found in influenza A viruses. Based on phylogenetic analysis, clade 1 viruses in Thailand were divided into 3 distinct branches (subclades 1, 1.1 and 1.2). Six out of 8 H5N1 isolates have been identified as reassorted H5N1 viruses, while other isolates belong to an original H5N1 clade. These viruses have undergone inter-lineage reassortment between subclades 1.1 and 1.2 and thus represent new reassorted 2008 H5N1 viruses. The reassorted viruses have acquired gene segments from H5N1, subclade 1.1 (PA, HA, NP and M) and subclade 1.2 (PB2, PB1, NA and NS) in Thailand. Bootscan analysis of concatenated whole genome sequences of the 2008 H5N1 viruses supported the reassortment sites between subclade 1.1 and 1.2 viruses. Based on estimating of the time of the most recent common ancestors of the 2008 H5N1 viruses, the potential point of genetic reassortment of the viruses could be traced back to 2006. Genetic analysis of the 2008 H5N1 viruses has shown that most virulence determinants in all 8 genes of the viruses have remained unchanged. In summary, two predominant H5N1 lineages were circulating in 2008. The original CUK2-like lineage mainly circulated in central Thailand and the reassorted lineage (subclades 1.1 and 1.2) predominantly circulated in lower-north Thailand. To prevent new reassortment, emphasis should be put on prevention of H5N1 viruses circulating in high risk areas. In addition, surveillance and whole genome sequencing of H5N1 viruses should be routinely performed for monitoring the genetic drift of the virus and new reassorted strains, especially in light of potential reassortment between avian and mammalian H5N1 viruses

    Factors linked to severe thrombocytopenia during antiviral therapy in patients with chronic hepatitis c and pretreatment low platelet counts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Baseline low platelet count (< 150,000/μL) increases the risk of on-treatment severe thrombocytopenia (platelet count < 50,000/μL) in patients with chronic hepatitis C (CHC) undergoing antiviral therapy, which may interrupt treatment. The purpose of this study was to identify risk factors for severe thrombocytopenia during treatment for CHC in patients with baseline thrombocytopenia.</p> <p>Methods</p> <p>Medical records were reviewed for 125 patients with CHC treated with antiviral therapy according to the standard of care, with regular follow-up examinations. Early platelet decline was defined as platelet decrease during the first 2 weeks of therapy.</p> <p>Results</p> <p>Severe thrombocytopenia developed in 12.8% of patients with baseline thrombocytopenia, and predicted a higher therapeutic dropout rate. Multivariate analysis revealed baseline platelet count < 100,000/μL and rapid early platelet decline (> 30% decline in the first 2 weeks) were significantly associated with severe thrombocytopenia (<it>P </it>< 0.001 and 0.003, odds ratios, 179.22 and 45.74, respectively). In these patients, baseline PLT ≥ 100,000/μL and lack of rapid early platelet decline predicted absence of severe thrombocytopenia (negative predictive values were 95.1% and 96.6%, respectively). In contrast, baseline platelet count < 100,000/μL combined with rapid early platelet decline predicted severe thrombocytopenia (positive predictive value was 100%).</p> <p>Conclusions</p> <p>For patients with CHC on antiviral therapy, baseline platelet counts < 100,000/μL and rapid early platelet decline can identify patients at high risk of developing on-treatment severe thrombocytopenia.</p
    corecore