34 research outputs found
Artificial intelligence innovations in neurosurgical oncology: a narrative review
Purpose Artificial Intelligence (AI) has become increasingly integrated clinically within neurosurgical oncology. This report reviews the cutting-edge technologies impacting tumor treatment and outcomes. Methods A rigorous literature search was performed with the aid of a research librarian to identify key articles referencing AI and related topics (machine learning (ML), computer vision (CV), augmented reality (AR), virtual reality (VR), etc.) for neurosurgical care of brain or spinal tumors. Results Treatment of central nervous system (CNS) tumors is being improved through advances across AI—such as AL, CV, and AR/VR. AI aided diagnostic and prognostication tools can influence pre-operative patient experience, while automated tumor segmentation and total resection predictions aid surgical planning. Novel intra-operative tools can rapidly provide histopathologic tumor classification to streamline treatment strategies. Post-operative video analysis, paired with rich surgical simulations, can enhance training feedback and regimens. Conclusion While limited generalizability, bias, and patient data security are current concerns, the advent of federated learning, along with growing data consortiums, provides an avenue for increasingly safe, powerful, and effective AI platforms in the future
Pattern of Relapse and Treatment Response in WNT- Activated Medulloblastoma
Over the past decade, wingless-activated (WNT) medulloblastoma has been identified as a candidate for therapy de-escalation based on excellent survival; however, a paucity of relapses has precluded additional analyses of markers of relapse. To address this gap in knowledge, an international cohort of 93 molecularly confirmed WNT MB was assembled, where 5-year progression-free survival is 0.84 (95%, 0.763-0.925) with 15 relapsed individuals identified. Maintenance chemotherapy is identified as a strong predictor of relapse, with individuals receiving high doses of cyclophosphamide or ifosphamide having only one very late molecularly confirmed relapse (p = 0.032). The anatomical location of recurrence is metastatic in 12 of 15 relapses, with 8 of 12 metastatic relapses in the lateral ventricles. Maintenance chemotherapy, specifically cumulative cyclophosphamide doses, is a significant predictor of relapse across WNT MB. Future efforts to de-escalate therapy need to carefully consider not only the radiation dose but also the chemotherapy regimen and the propensity for metastatic relapses
Therapeutic impact of cytoreductive surgery and irradiation of posterior fossa ependymoma in the molecular era: a retrospective multicohort analysis
PURPOSE: Posterior fossa ependymoma comprises two distinct molecular variants termed EPN_PFA and EPN_PFB that have a distinct biology and natural history. The therapeutic value of cytoreductive surgery and radiation therapy for posterior fossa ependymoma after accounting for molecular subgroup is not known. METHODS: Four independent nonoverlapping retrospective cohorts of posterior fossa ependymomas (n = 820) were profiled using genome-wide methylation arrays. Risk stratification models were designed based on known clinical and newly described molecular biomarkers identified by multivariable Cox proportional hazards analyses. RESULTS: Molecular subgroup is a powerful independent predictor of outcome even when accounting for age or treatment regimen. Incompletely resected EPN_PFA ependymomas have a dismal prognosis, with a 5-year progression-free survival ranging from 26.1% to 56.8% across all four cohorts. Although first-line (adjuvant) radiation is clearly beneficial for completely resected EPN_PFA, a substantial proportion of patients with EPN_PFB can be cured with surgery alone, and patients with relapsed EPN_PFB can often be treated successfully with delayed external-beam irradiation. CONCLUSION: The most impactful biomarker for posterior fossa ependymoma is molecular subgroup affiliation, independent of other demographic or treatment variables. However, both EPN_PFA and EPN_PFB still benefit from increased extent of resection, with the survival rates being particularly poor for subtotally resected EPN_PFA, even with adjuvant radiation therapy. Patients with EPN_PFB who undergo gross total resection are at lower risk for relapse and should be considered for inclusion in a randomized clinical trial of observation alone with radiation reserved for those who experience recurrence
Therapeutic Impact of Cytoreductive Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A Retrospective Multicohort Analysis
Posterior fossa ependymoma comprises two distinct molecular variants termed EPN_PFA and EPN_PFB that have a distinct biology and natural history. The therapeutic value of cytoreductive surgery and radiation therapy for posterior fossa ependymoma after accounting for molecular subgroup is not known
Author Correction: Federated learning enables big data for rare cancer boundary detection.
10.1038/s41467-023-36188-7NATURE COMMUNICATIONS14
Federated learning enables big data for rare cancer boundary detection.
Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing
Federated Learning Enables Big Data for Rare Cancer Boundary Detection
Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing