156 research outputs found

    On orientational relief of inter-molecular potential and the structure of domain walls in fullerite C60

    Full text link
    A simple planar model for an orientational ordering of threefold molecules on a triangular lattice modelling a close-packed (111) plane of fullerite is considered. The system has 3-sublattice ordered ground state which includes 3 different molecular orientations. There exist 6 kinds of orientational domains, which are related with a permutation or a mirror symmetry. Interdomain walls are found to be rather narrow. The model molecules have two-well orientational potential profiles, which are slightly effected by a presence of a straight domain wall. The reason is a stronger correlation between neighbour molecules in triangular lattice versus previously considered square lattice A considerable reduction (up to one order) of orientational interwell potential barrier is found in the core regions of essentially two-dimentional potential defects, such as a three-domain boundary or a kink in the domain wall. For ultimately uncorrelated nearest neighbours the height of the interwell barrier can be reduced even by a factor of 100.Comment: 11 pages, 13 figures, LaTeX, to appear in Low Temperature Physic

    Temperature-doping phase diagram of layered superconductors

    Full text link
    The superconducting properties of a layered system are analyzed for the cases of zero- and non-zero angular momentum of the pairs. The effective thermodynamic potential for the quasi-2D XY-model for the gradients of the phase of the order parameter is derived from the microscopic superconducting Hamiltonian. The dependence of the superconducting critical temperature T_c on doping, or carrier density, is studied at different values of coupling and inter-layer hopping. It is shown that the critical temperature T_c of the layered system can be lower than the critical temperature of the two-dimensional Berezinskii-Kosterlitz-Thouless transition T_BKT at some values of the model parameters, contrary to the case when the parameters of the XY-model do not depend on the microscopic Hamiltonian parameters.Comment: To be published in Phys. Rev.

    Pseudogap phase formation in the crossover from Bose-Einstein condensation to BCS superconductivity

    Full text link
    A phase diagram for a 2D metal with variable carrier density has been derived. It consists of a normal phase, where the order parameter is absent; a so-called ``abnormal normal'' phase where this parameter is also absent but the mean number of composite bosons (bound pairs) exceeds the mean number of free fermions; a pseudogap phase where the absolute value of the order parameter gradually increases but its phase is a random value, and finally a superconducting (here Berezinskii-Kosterlitz-Thouless) phase. The characteristic transition temperatures between these phases are found. The chemical potential and paramagnetic susceptibility behavior as functions of the fermion density and the temperature are also studied. An attempt is made to qualitatively compare the resulting phase diagram with the features of underdoped high-TcT_{c} superconducting compounds above their critical temperature.Comment: 26 pages, revtex, 5 EMTeX figures; more discussion and references added; to be published in JET

    Superconductivity in La(1.56)Sr(0.44)CuO(4)/La(2)CuO(4) superlattices

    Get PDF
    Superlattices of the repeated structure La(1.56)Sr(0.44)CuO(4)/La(2)CuO(4) (LSCO-LCO), where none of the constituents is superconducting, show a superconducting transition of T_c \simeq 25 K. In order to elucidate the nature of the superconducting state we have performed a low-energy muSR study. By applying a magnetic field parallel (Meissner state) and perpendicular (vortex state) to the film planes, we could show that superconductivity is sheet like, resulting in a very anisotropic superconducting state. This result is consistent with a simple charge-transfer model, which takes into account the layered structure and the difference in the chemical potential between LCO and LSCO, as well as Sr interdiffusion. Using a pancake-vortex model we could estimate a strict upper limit of the London penetration depth to 380 nm in these superlattices. The temperature dependence of the muon depolarization rate in field cooling experiments is very similar to what is observed in intercalated BSCCO and suggests that vortex-vortex interaction is dominated by electromagnetic coupling but negligible Josephson interaction.Comment: 4 pages, 3 figure

    BCS-Bose Crossover in Color Superconductivity

    Get PDF
    It is shown that the onset of the color superconducting phase occurs in the BCS-BE crossover region.Comment: 5 pages, LaTeX, references adde

    Evidences for Tsallis non-extensivity on CMR manganites

    Full text link
    We found, from the analysis of MM vs. TT curves of some manganese oxides (manganites), that these systems do not follow the traditional Maxwell-Boltzmann statistics, but the Tsallis statistics, within the \QTR{em}{normalized} formalism. Curves were calculated within the mean field approximation, for various ferromagnetic samples and the results were compared to measurements of our own and to various other authors published data, chosen at random from the literature. The agreement between the experimental data and calculated MqM_{q} vs. TT^{\ast} curve, where TT^{\ast} is an effective temperature, is excellent for all the compounds. The entropic parameter, qq, correlates in a simple way with the experimental value of TcT_{c}, irrespect the chemical composition of the compounds, heat treatment or other details on sample preparation. Examples include q<1q<1 (superextensivity), q=1q=1 (extensivity) and q>1q>1 (subextensivity) cases.Comment: 12 pages, 3 figure

    Pseudogap from ARPES experiment: three gaps in cuprates and topological superconductivity

    Get PDF
    A term first coined by Mott back in 1968 a `pseudogap' is the depletion of the electronic density of states at the Fermi level, and pseudogaps have been observed in many systems. However, since the discovery of the high temperature superconductors (HTSC) in 1986, the central role attributed to the pseudogap in these systems has meant that by many researchers now associate the term pseudogap exclusively with the HTSC phenomenon. Recently, the problem has got a lot of new attention with the rediscovery of two distinct energy scales (`two-gap scenario') and charge density waves patterns in the cuprates. Despite many excellent reviews on the pseudogap phenomenon in HTSC, published from its very discovery up to now, the mechanism of the pseudogap and its relation to superconductivity are still open questions. The present review represents a contribution dealing with the pseudogap, focusing on results from angle resolved photoemission spectroscopy (ARPES) and ends up with the conclusion that the pseudogap in cuprates is a complex phenomenon which includes at least three different `intertwined' orders: spin and charge density waves and preformed pairs, which appears in different parts of the phase diagram. The density waves in cuprates are competing to superconductivity for the electronic states but, on the other hand, should drive the electronic structure to vicinity of Lifshitz transition, that could be a key similarity between the superconducting cuprates and iron based superconductors. One may also note that since the pseudogap in cuprates has multiple origins there is no need to recoin the term suggested by Mott.Comment: invited review, more info at http://www.imp.kiev.ua/~kor

    On the Theory of the Pseudogap Formation in 2D Attracting Fermion Systems

    Full text link
    Two-dimensional system of the fermions with the indirect Einstein phonon-exchange attraction and added local four-fermion interaction is considered. It is shown that in such a system at resulting attraction between particles a new nonsuperconducting phase arises along with the normal and superconducting phases. In this, called "abnormal normal", or pseudogap, phase the absolute value of the order parameter is finite but its phase is a random quantity. It is important that the new phase really exists at low carrier density only, i.e. it shrinks with doping increasing in the case of phonon attraction. The relevance of the results for high-temperature superconductors is speculated. Key words: 2D metal, arbitrary carrier density, normal phase, abnormal normal phase, pseudogap, suderconducting phase, Berezinskii-Kosterlitz-Thouless phase, electron-electron and electron-hole pairingComment: 19 pages, 2 figures (emtex

    Математическое моделирование участков переменной жёсткости перед искусственными сооружениями

    Get PDF
    For the English abstract and full text of the article please see the attached PDF-File (English version follows Russian version).ABSTRACT The article deals with the features of the transition zone from the ballast under-sleeper base to the bridge structure with various types of span structures, as well as the sections of the ballastless track, conjugated with the transient zone. An analytical model is proposed for describing the dynamic behavior of a railway track in the form of a transversely isotropic plate with variable rigidity parameters. Examples of the use of the proposed model for calculating the dynamic depression of a roadbed under the influence of a rolling stock with different freight and speed characteristics are given. Keywords: railway, bridge, roadbed, residual deformation, variable rigidity section, track depression, slope, elastic wave, track profile, transversal-isotropic plate.Текст аннотации на англ. языке и полный текст статьи на англ. языке находится в прилагаемом файле ПДФ (англ. версия следует после русской версии).В статье рассматриваются особенности переходной зоны с балластного подшпального основания на мостовое сооружение с различными типами пролётных строений, а также сопряжённые с зоной участки безбалластного пути. Предложена аналитическая модель для описания динамического поведения железнодорожного пути в виде трансверсально-изотропной пластины с переменными параметрами жёсткости. Приведены примеры использования предложенной модели для вычисления динамической осадки земляного полотна под воздействием подвижного состава с разными грузовыми и скоростными характеристиками

    Pseudogap and Superconducting Fluctuation in High-Tc Cuprates: Theory beyond 1-loop Approximation

    Full text link
    The pseudogap phenomena induced by the SC fluctuation are investigated in details. We perform a calculation beyond the 1-loop approximation. The SC fluctuation is microscopically derived on the basis of the repulsive Hubbard model. The vertex corrections are collected in the infinite order with use of the quasi-static approximation. The single-particle excitations, NMR 1/T_{1}T, spin susceptibility and superconducting transition temperature are discussed. The important role of the vertex correction is pointed out for the single particle spectral function. On the other hand, the validity of the 1-loop order theory is confirmed for other quantities. We shed light on the essential nature of SC fluctuation leading to the pseudogap from the comparison with spin and charge fluctuations
    corecore