32 research outputs found

    Numerical simulations of bent, disrupted radio jets

    Get PDF
    We present preliminary results from three-dimensional hydrodynamical simulations designed to investigate the physics of jet bending and disruption. The specific scenario considered here involves a mildly supersonic jet crossing a contact discontinuity at the interface between the interstellar medium (ISM) and the intercluster medium (ICM) and then encountering a cross-wind in the ICM. The resultant morphologies show many of the features observed in radio sources including jet flaring, bending, and extended tails

    A numerical simulation of galaxy subcluster mergers

    Get PDF
    We present preliminary results of a 3-D numerical simulation of two merging subclusters of galaxies. By self-consistently modelling the intracluster gas and dark matter dynamics, we hope to gain insight as to how the dynamics of both relate to such observables as the cluster x-ray emission, radio source morphology, and velocity dispersions

    Weak Gravitational Lensing and Cluster Mass Estimates

    Get PDF
    Hierarchical theories of structure formation predict that clusters of galaxies should be embedded in a web like structure, with filaments emanating from them to large distances. The amount of mass contained within such filaments near a cluster can be comparable to the collapsed mass of the cluster itself. Diffuse infalling material also contains a large amount of mass. Both these components can contribute to the cluster weak lensing signal. This ``projection bias'' is maximized if a filament lies close to the line-of-sight to a cluster. Using large--scale numerical simulations of structure formation in a cosmological constant dominated cold dark matter model, we show that the projected mass typically exceeds the actual mass by several tens of percent. This effect is significant for attempts to estimate cluster masses through weak lensing observations, and will affect weak lensing surveys aimed at constructing the cluster mass function.Comment: 4 pages, 3 figures. LaTeX2e, uses emulateapj.sty and onecolfloat.sty. To be submitted to the Astrophysical Journal Letter

    Numerical models of jet disruption in cluster cooling flows

    Get PDF
    We present a coherent picture for the formation of the observed diverse radio morphological structures in dominant cluster galaxies based on the jet Mach number. Realistic, supersonic, steady-state cooling flow atmospheres are evolved numerically and then used as the ambient medium through which jets of various properties are propagated. Low Mach number jets effectively stagnate due to the ram pressure of the cooling flow atmosphere while medium Mach number jets become unstable and disrupt in the cooling flow to form amorphous structures. High Mach number jets manage to avoid disruption and are able to propagate through the cooling flow

    The Evolution of X-Ray Clusters in a Cold Plus Hot Dark Matter Universe

    Full text link
    We present the first self-consistently computed results on the evolution of X-ray properties of galaxy clusters in a Cold + Hot Dark Matter (CHDM) model. We have performed a hydrodynamic plus N-body simulation for the COBE-compatible CHDM model with standard mass components: Omega(hot) = 0.3, Omega(cold) = 0.6 and Omega(baryon) = 0.1 (h = 0.5). In contrast with the CDM model, which fails to reproduce the observed temperature distribution function dN/dT (Bryan et al. 1994b), the CHDM model fits the observational dN/dT quite well. Our results on X-ray luminosity are less firm but even more intriguing. We find that the resulting X-ray luminosity functions at redshifts z = 0.0, 0.2, 0.4, 0.7 are well fit by observations, where they overlap. The fact that both temperatures and luminosities provide a reasonable fit to the available observational data indicates that, unless we are missing some essential physics, there is neither room nor need for a large fraction of gas in rich clusters: 10% (or less) in baryons is sufficient to explain their X-ray properties. We also see a tight correlation between X-ray luminosity and gas temperature.Comment: 11 pages, 3 figures uuencoded postscript file, (92 kb), accepted for publication in Astrophysical Journal Letters. Also available via anonymous ftp at zeus.ncsa.uiuc.edu in gc3/publications/gc3005, LCA01

    The Observational Consequences of Merging Clusters of Galaxies

    Get PDF
    We present an observational analysis of numerical simulations of galaxy cluster mergers. We identify several observational signatures of recent merger activity, and quantitatively assess the uncertainty introduced into cluster mass estimates when invoking the commonly held assumptions of hydrostatic equilibrium, virial equilibrium, spherical symmetry and isothermality. We find that mergers result in multiple X-ray peaks, long-lived elongation of the X-ray emission as well as isophotal twisting and centroid shifting to a degree consistent with recent observations. We also find an enlargement of the X-ray core relative to the dark matter core. Mergers result in non-isothermal clusters exhibiting observable inhomogeneities in the emission-weighted X-ray temperature of several keV on linear scales of less than 0.5 Mpc. The resulting gas dynamics are extremely complex, and we present an example of what might be observed by a high resolution X-ray spectrograph. We further speculate that the gas dynamics, via shocks, bulk flows and turbulence, play an important role in the evolution of cluster galaxies and associated radio sources, particularly wide-angle tailed (WAT) sources and radio halos. We find that X-ray based by cluster mass estimates made under equilibrium assumptions can be uncertain 50\% or more in the first 2 Gyrs after a merger and by up to 25\% after 2 Gyrs depending on the details of the analysis and projection effects. Uncertainties can be considerably larger if the temperature is not well constrained.Comment: 42 pages, Latex, 23 postscript figures, Accepted for publication in Ap

    Redshifts and Optical Properties for a Statistically Complete Sample of Poor Galaxy Clusters

    Get PDF
    From the poor cluster catalog of White et al. (1996), we define a sample of 71 optically-selected poor galaxy clusters. The surface-density enhance- ment we require for our clusters falls between that of the loose associations of Turner and Gott (1976) and the Hickson compact groups (Hickson, 1982). We review the selection biases and determine the statistical comleteness of the sample. For this sample, we report new velocity measurements made with the ARC 3.5-m Dual-Imaging spectrograph and the 2.3-m Steward Observatory MX fiber spectrograph. Combining our own measurements with those from the literature, we examine the velocity distributions, velocity dispersions, and 1-d velocity substructure for our poor cluster sample, and compare our results to other poor cluster samples. We find that approximately half of the sample may have significant 1-d velocity substructure. The optical morphology, large-scale environment, and velocity field of many of these clusters is indicative of young, dynamically evolving systems. In future papers, we will use this sample to derive the poor cluster X-ray luminosity function and gas mass function (see astro-ph/9606120), and will examine the optical/X-ray properties of the clusters in more detail.Comment: 15 pages LaTeX, 3 tables, 5 postscript figures. To appear in the August 1996 Astronomical Journa

    The Effect of the Cosmic Web on Cluster Weak Lensing Mass Estimates

    Get PDF
    In modern hierarchical theories of structure formation, rich clusters of galaxies form at the vertices of a weblike distribution of matter, with filaments emanating from them to large distances and with smaller objects forming and draining in along these filaments. The amount of mass contained in structure near the cluster can be comparable to the collapsed mass of the cluster itself. As the lensing kernel is quite broad along the line of sight around cluster lenses with typical redshifts near z=0.5, structures many Mpc away from the cluster are essentially at the same location as the cluster itself, when considering their effect on the cluster's weak lensing signal. We use large-scale numerical simulations of structure formation in a Lambda-dominated cold dark matter model to quantify the effect that large-scale structure near clusters has upon the cluster masses deduced from weak lensing analysis. A correction for the scatter in possible observed lensing masses should be included when interpreting mass functions from weak lensing surveys.Comment: 14 pages, 11 figures. LaTeX2e, uses emulateapj.sty and onecolfloat.st
    corecore