411 research outputs found

    Measuring the impact of blockchain on healthcare applications

    Get PDF
    Blockchain is a technology with potential for making ground breaking steps in addressing social, economic and healthcare challenges. The global information technology scene is being overcrowded with blockchain applications with special focus on the vast healthcare market [12]. The value of information related to healthcare creates a clear path for applying blockchain as a solution for some of the challenges in the healthcare sector, in particular with the goal of creating a fair and transparent way for sharing information and patient data. It is however a fact that while blockchain technology introduces additional complexity to the implementation healthcare software, the benefit the technology actually brings still remains unclear and difficult to evaluate. This vision paper demonstrates our research focus on providing a body of knowledge and tools to help evaluate this impact of blockchain on eHealth applications. In particular, we identify that such a research effort has to explicitly consider cost of addressing challenges inherent to the eHealth domain like integration of disparate software systems (hospitals, research institutions, government agencies, health insurance and pharmaceutical companies, etc.), the potential introduction of cryptocurrencies in healthcare systems, degree of patient service improvement, transparency and compliance to laws and regulations, and others. The more traditional influencing factors, like cost of development and running, licenses for using third-party software services, and the ones inherent to blockchain like cost of computation and energy will also have to be taken into consideration in the metrics model.</p

    Unique terminal regions and specific deletions of the segmented double-stranded RNA genome of Alternaria alternata virus 1, in the proposed family Alternaviridae

    Get PDF
    Alternaria alternata virus 1 (AaV1) has been identified in the saprophytic fungus Alternaria alternata strain EGS 35-193. AaV1 has four genomic double-stranded (ds)RNA segments (dsRNA1-4) packaged in isometric particles. The 3' end of each coding strand is polyadenylated (36-50nt), but the presence of a cap structure at each 5' end has not previously been investigated. Here, we have characterized the AaV1 genome and found that it has unique features among the mycoviruses. We confirmed the existence of cap structures on the 5' ends of the AaV1 genomic dsRNAs using RNA dot blots with anti-cap antibodies and the oligo-capping method. Polyclonal antibodies against purified AaV1 particles specifically bound to an 82kDa protein, suggesting that this protein is the major capsid component. Subsequent Edman degradation indicated that the AaV1 dsRNA3 segment encodes the major coat protein. Two kinds of defective AaV1 dsRNA2, which is 2,794bp (844 aa) in length when intact, appeared in EGS 35-193 during subculturing, as confirmed by RT-PCR and northern hybridization. Sequence analysis revealed that one of the two defective dsRNA2s contained a 231bp deletion, while the other carried both the 231bp deletion and an additional 465bp deletion in the open reading frame. Both deletions occurred in-frame, resulting in predicted proteins of 767 aa and 612 aa. The fungal isolates carrying virions with the defective dsRNA2s showed impaired growth and abnormal pigmentation. To our best knowledge, AaV1 is the first dsRNA virus to be identified with both 5' cap and 3'poly(A) structures on its genomic segments, as well as the specific deletions of dsRNA2

    Fetus Exposure to Drugs and Chemicals: A Holistic Overview on the Assessment of Their Transport and Metabolism across the Human Placental Barrier

    Get PDF
    © 2024 The Author(s). Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Background: The placenta exerts a crucial role in fetus growth and development during gestation, protecting the fetus from maternal drugs and chemical exposure. However, diverse drugs and chemicals (xenobiotics) can penetrate the maternal placental barrier, leading to deleterious, adverse effects concerning fetus health. Moreover, placental enzymes can metabolize drugs and chemicals into more toxic compounds for the fetus. Thus, evaluating the molecular mechanisms through which drugs and chemicals transfer and undergo metabolism across the placental barrier is of vital importance. In this aspect, this comprehensive literature review aims to provide a holistic approach by critically summarizing and scrutinizing the potential molecular processes and mechanisms governing drugs and chemical transfer and metabolism across the placental barrier, which may lead to fetotoxicity effects, as well as analyzing the currently available experimental methodologies used to assess xenobiotics placental transfer and metabolism. Methods: A comprehensive and in-depth literature review was conducted in the most accurate scientific databases such as PubMed, Scopus, and Web of Science by using relevant and effective keywords related to xenobiotic placental transfer and metabolism, retrieving 8830 published articles until 5 February 2024. After applying several strict exclusion and inclusion criteria, a final number of 148 relevant published articles were included. Results: During pregnancy, several drugs and chemicals can be transferred from the mother to the fetus across the placental barrier by either passive diffusion or through placental transporters, resulting in fetus exposure and potential fetotoxicity effects. Some drugs and chemicals also appear to be metabolized across the placental barrier, leading to more toxic products for both the mother and the fetus. At present, there is increasing research development of diverse experimental methodologies to determine the potential molecular processes and mechanisms of drug and chemical placental transfer and metabolism. All the currently available methodologies have specific strengths and limitations, highlighting the strong demand to utilize an efficient combination of them to obtain reliable evidence concerning drug and chemical transfer and metabolism across the placental barrier. To derive the most consistent and safe evidence, in vitro studies, ex vivo perfusion methods, and in vivo animal and human studies can be applied together with the final aim to minimize potential fetotoxicity effects. Conclusions: Research is being increasingly carried out to obtain an accurate and safe evaluation of drug and chemical transport and metabolism across the placental barrier, applying a combination of advanced techniques to avoid potential fetotoxic effects. The improvement of the currently available techniques and the development of novel experimental protocols and methodologies are of major importance to protect both the mother and the fetus from xenobiotic exposure, as well as to minimize potential fetotoxicity effects.Peer reviewe

    ICTV virus taxonomy profile: Hadakaviridae 2023.

    Get PDF
    The family Hadakaviridae, including the genus Hadakavirus, accommodates capsidless viruses with a 10- or 11-segmented positive-sense (+) RNA genome. Currently known hosts are ascomycetous filamentous fungi. Although phylogenetically related to polymycovirids with a segmented double-stranded RNA genome and certain encapsidated picorna-like viruses, hadakavirids are distinct in their lack of a capsid ('hadaka' means naked in Japanese) and their consequent inability to be pelleted by conventional ultracentrifugation; they show ribonuclease susceptibility in host tissue homogenates. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Hadakaviridae, which is available at ictv.global/report/hadakaviridae

    ICTV virus taxonomy profile: Yadokariviridae 2023.

    Get PDF
    The family Yadokariviridae, with the genera Alphayadokarivirus and Betayadokarivirus, includes capsidless non-segmented positive-sense (+) RNA viruses that hijack capsids from phylogenetically distant double-stranded RNA viruses. Yadokarivirids likely replicate inside the hijacked heterocapsids using their own RNA-directed RNA polymerase, mimicking dsRNA viruses despite their phylogenetic placement in a (+) RNA virus lineage. Yadokarivirids can have negative or positive impacts on their host fungi, through interactions with the capsid donor dsRNA viruses. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) report on the family Yadokariviridae, which is available at ictv.global/report/yadokariviridae

    A novel heptasegmented positive-sense single-stranded RNA virus from the phytopathogenic fungus colletotrichum fructicola

    Get PDF
    In this study, a novel positive-sense single-stranded RNA (+ssRNA) mycovirus, tentatively named Colletotrichum fructicola RNA virus 1 (CfRV1), was identified in the phytopathogenic fungus Colletotrichum fructicola. CfRV1 has seven genomic components, encoding seven proteins from open reading frames (ORFs) flanked by highly conserved untranslated regions (UTRs). Proteins encoded by ORFs 1, 2, 3, 5, and 6 are more similar to the putative RNA-dependent RNA polymerase (RdRp), hypothetical protein (P2), methyltransferase, and two hypothetical proteins of Hadaka virus 1 (HadV1), a capsidless 10- or 11-segmented +ssRNA virus, while proteins encoded by ORFs 4 and 7 showed no detectable similarity to any known proteins. Notably, proteins encoded by ORFs 1 to 3 also share considerably high similarity with the corresponding proteins of polymycoviruses. Phylogenetic analysis conducted based on the amino acid sequence of CfRV1 RdRp and related viruses placed CfRV1 and HadV1 together in the same clade, close to polymycoviruses and astroviruses. CfRV1-infected C. fructicola strains demonstrate a moderately attenuated growth rate and virulence compared to uninfected isolates. CfRV1 is capsidless and potentially encapsulated in vesicles inside fungal cells, as revealed by transmission electron microscopy. CfRV1 and HadV1 are +ssRNA mycoviruses closely related to polymycoviruses and astroviruses, represent a new linkage between +ssRNA viruses and the intermediate double-stranded RNA (dsRNA) polymycoviruses, and expand our understanding of virus diversity, taxonomy, evolution, and biological traits. IMPORTANCE A scenario proposing that dsRNA viruses evolved from +ssRNA viruses is still considered controversial due to intergroup knowledge gaps in virus diversity. Recently, polymycoviruses and hadakaviruses were found as intermediate dsRNA and +ssRNA stages, respectively, between +ssRNA and dsRNA viruses. Here, we identified a novel +ssRNA mycovirus, Colletotrichum fructicola RNA virus 1 (CfRV1), isolated from Colletotrichum fructicola in China. CfRV1 is phylogenetically related to the 10- or 11-segmented Hadaka virus 1 (HadV1) but consists of only seven genomic segments encoding two novel proteins. CfRV1 is naked and may be encapsulated in vesicles inside fungal cells, representing a potential novel lifestyle for multisegmented RNA viruses. CfRV1 and HadV1 are intermediate +ssRNA mycoviruses in the linkage between +ssRNA viruses and the intermediate dsRNA polymycoviruses and expand our understanding of virus diversity, taxonomy, and evolution

    Automatic speech analysis to early detect functional cognitive decline in elderly population

    Get PDF
    This study aimed at evaluating whether people with a normal cognitive function can be discriminated from subjects with a mild impairment of cognitive function based on a set of acoustic features derived from spontaneous speech. Voice recordings from 90 Italian subjects (age &gt;65 years; group 1: 47 subjects with MMSE&gt;26; group 2: 43 subjects with 20≤ MMSE ≤26) were collected. Voice samples were processed using a MATLAB-based custom software to derive a broad set of known acoustic features. Linear mixed model analyses were performed to select the features able to significantly distinguish between groups. The selected features (% of unvoiced segments, duration of unvoiced segments, % of voice breaks, speech rate, and duration of syllables), alone or in addition to age and years of education, were used to build a learning-based classifier. The leave-one-out cross validation was used for testing and the classifier accuracy was computed. When the voice features were used alone, an overall classification accuracy of 0.73 was achieved. When age and years of education were additionally used, the overall accuracy increased up to 0.80. These performances were lower than the accuracy of 0.86 found in a recent study. However, in that study the classification was based on several tasks, including more cognitive demanding tasks. Our results are encouraging because acoustic features, derived for the first time only from an ecologic continuous speech task, were able to discriminate people with a normal cognitive function from people with a mild cognitive decline. This study poses the basis for the development of a mobile application performing automatic voice analysis on-the-fly during phone calls, which might potentially support the detection of early signs of functional cognitive decline

    Conceptualising a Dynamic Technology Practice in Education Using Argyris and Schön's Theory of Action

    Get PDF
    Despite substantial national effort to integrate technology in education, it seems that practitioners in the education system are not working in line with the given policy. Evidence from large-scale studies of students’ technology practices at school over the last decade show disparities in student practices. The observed gap between the micro and the macro level call for a closer exploration. Research that explores the influence of social and organizational factors may be useful for understanding the processes behind such gaps. Argyris and Schön’s ‘Theory of Action’ (1978) is proposed as an example of an organizational theory that can be adopted in educational technology research to move towards understanding the complexities of technology practice. To encourage discourse and application of Argyris and Schön’s theory in the field of educational technology research, this paper introduces the theory, a review of its empirical application in research of teacher educations’ technology practice and relevant conceptual work. The paper presents a conceptual framework based on Argyris and Schön’s theory that has been developed through two recent studies, and invites its application in future research and development

    Studies on the virome of the entomopathogenic fungus Beauveria bassiana reveal novel dsRNA elements and mild hypervirulence.

    Get PDF
    © 2017 Kotta-Loizou, Coutts. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Kotta-Loizou I, Coutts RHA (2017) 'Studies on the Virome of the Entomopathogenic Fungus Beauveria bassiana Reveal Novel dsRNA Elements and Mild Hypervirulence', PLoS Pathogens, 13(1): e1006183. doi:10.1371/journal.ppat.1006183The entomopathogenic fungus Beauveria bassiana has a wide host range and is used as a biocontrol agent against arthropod pests. Mycoviruses have been described in phytopathogenic fungi while in entomopathogenic fungi their presence has been reported only rarely. Here we show that 21.3% of a collection of B. bassiana isolates sourced from worldwide locations, harbor dsRNA elements. Molecular characterization of these elements revealed the prevalence of mycoviruses belonging to the Partitiviridae and Totiviridae families, the smallest reported virus to date, belonging to the family Narnaviridae, and viruses unassigned to a family or genus. Of particular importance is the discovery of members of a newly proposed family Polymycoviridae in B. bassiana. Polymycoviruses, previously designated as tetramycoviruses, consist of four non-conventionally encapsidated capped dsRNAs. The presence of additional non-homologous genomic segments in B. bassiana polymycoviruses and other fungi illustrates the unprecedented dynamic nature of the viral genome. Finally, a comparison of virus-free and virus-infected isogenic lines derived from an exemplar B. bassiana isolate revealed a mild hypervirulent effect of mycoviruses on the growth of their host isolate and on its pathogenicity against the greater wax moth Galleria mellonella, highlighting for the first time the potential of mycoviruses as enhancers of biocontrol agents.Peer reviewedFinal Published versio
    • …
    corecore