3 research outputs found

    Polymerase delta deficiency causes syndromic immunodeficiency with replicative stress

    No full text
    Polymerase delta is essential for eukaryotic genome duplication and synthesizes DNA at both the leading and lagging strands. The polymerase delta complex is a heterotetramer comprising the catalytic subunit POLD1 and the accessory subunits POLD2, POLD3, and POLD4. Beyond DNA replication, the polymerase delta complex has emerged as a central element in genome maintenance. The essentiality of polymerase delta has constrained the generation of polymerase delta-knockout cell lines or model organisms and, therefore, the understanding of the complexity of its activity and the function of its accessory subunits. To our knowledge, no germline biallelic mutations affecting this complex have been reported in humans. In patients from 2 independent pedigrees, we have identified what we believe to be a novel syndrome with reduced functionality of the polymerase delta complex caused by germline biallelic mutations in POLD1 or POLD2 as the underlying etiology of a previously unknown autosomal-recessive syndrome that combines replicative stress, neurodevelopmental abnormalities, and immunodeficiency. Patients' cells showed impaired cell-cycle progression and replication-associated DNA lesions that were reversible upon overexpression of polymerase delta. The mutations affected the stability and interactions within the polymerase delta complex or its intrinsic polymerase activity. We believe our discovery of human polymerase delta deficiency identifies the central role of this complex in the prevention of replication-related DNA lesions, with particular relevance to adaptive immunity.Transplantation and immunomodulatio

    10-year stroke prevention after successful carotid endarterectomy for asymptomatic stenosis (ACST-1); a multicentre randomised trial

    Get PDF
    BACKGROUND: If carotid artery narrowing remains asymptomatic (ie, has caused no recent stroke or other neurological symptoms), successful carotid endarterectomy (CEA) reduces stroke incidence for some years. We assessed the long-term effects of successful CEA. METHODS: Between 1993 and 2003, 3120 asymptomatic patients from 126 centres in 30 countries were allocated equally, by blinded minimised randomisation, to immediate CEA (median delay 1 month, IQR 0·3-2·5) or to indefinite deferral of any carotid procedure, and were followed up until death or for a median among survivors of 9 years (IQR 6-11). The primary outcomes were perioperative mortality and morbidity (death or stroke within 30 days) and non-perioperative stroke. Kaplan-Meier percentages and logrank p values are from intention-to-treat analyses. This study is registered, number ISRCTN26156392. FINDINGS: 1560 patients were allocated immediate CEA versus 1560 allocated deferral of any carotid procedure. The proportions operated on while still asymptomatic were 89·7% versus 4·8% at 1 year (and 92·1%vs 16·5% at 5 years). Perioperative risk of stroke or death within 30 days was 3·0% (95% CI 2·4-3·9; 26 non-disabling strokes plus 34 disabling or fatal perioperative events in 1979 CEAs). Excluding perioperative events and non-stroke mortality, stroke risks (immediate vs deferred CEA) were 4·1% versus 10·0% at 5 years (gain 5·9%, 95% CI 4·0-7·8) and 10·8% versus 16·9% at 10 years (gain 6·1%, 2·7-9·4); ratio of stroke incidence rates 0·54, 95% CI 0·43-0·68, p<0·0001. 62 versus 104 had a disabling or fatal stroke, and 37 versus 84 others had a non-disabling stroke. Combining perioperative events and strokes, net risks were 6·9% versus 10·9% at 5 years (gain 4·1%, 2·0-6·2) and 13·4% versus 17·9% at 10 years (gain 4·6%, 1·2-7·9). Medication was similar in both groups; throughout the study, most were on antithrombotic and antihypertensive therapy. Net benefits were significant both for those on lipid-lowering therapy and for those not, and both for men and for women up to 75 years of age at entry (although not for older patients). INTERPRETATION: Successful CEA for asymptomatic patients younger than 75 years of age reduces 10-year stroke risks. Half this reduction is in disabling or fatal strokes. Net benefit in future patients will depend on their risks from unoperated carotid lesions (which will be reduced by medication), on future surgical risks (which might differ from those in trials), and on whether life expectancy exceeds 10 years. FUNDING: UK Medical Research Council, BUPA Foundation, Stroke Association
    corecore