283 research outputs found

    New trends in femtosecond Pulsed Laser Deposition and femtosecond produced plasma diagnostics

    No full text
    International audienceThe availability of compact table top amplified femtosecond lasers and the technical simplicity of experimental design have opened the way to many recent and fast developments towards thin film elaboration by Pulsed Laser Deposition (PLD) with ultra short laser pulses, with the aim of producing materials of high quality previously unattainable or attainable only through more complex means. The first developments of PLD using femtosecond lasers were made on Diamond-Like Carbon thin films elaboration, with the attempt to reach high sp3 content. PLD with ultra short pulses was used recently to deposit several systems such as quasicrystals or oxides with a transfer of the target composition to the deposited films, even for compounds with complex stoechiometry. Femtosecond laser ablation from solid targets has shown its capability in producing nanoparticles of different materials, even in high vacuum conditions. Nanostructured films of doped Diamond-Like Carbon were obtained recently, opening the way to large applications towards functional materials. The characteristics of the plasma are a well-suited signature of the physics of laser-matter interaction and plasma plume creation and expansion. Recent studies on the control of the film growth and femtosecond PLD processes will be reported. Emphasis on actual capability of the existing sources to elaborate high quality materials will be questioned in terms of energy per pulse, time width, repetition rates but also in the need for further source development and beam shaping improvement

    Big Line Bundles over Arithmetic Varieties

    Full text link
    We prove a Hilbert-Samuel type result of arithmetic big line bundles in Arakelov geometry, which is an analogue of a classical theorem of Siu. An application of this result gives equidistribution of small points over algebraic dynamical systems, following the work of Szpiro-Ullmo-Zhang. We also generalize Chambert-Loir's non-archimedean equidistribution

    Geometric Bogomolov conjecture for abelian varieties and some results for those with some degeneration (with an appendix by Walter Gubler: The minimal dimension of a canonical measure)

    Full text link
    In this paper, we formulate the geometric Bogomolov conjecture for abelian varieties, and give some partial answers to it. In fact, we insist in a main theorem that under some degeneracy condition, a closed subvariety of an abelian variety does not have a dense subset of small points if it is a non-special subvariety. The key of the proof is the study of the minimal dimension of the components of a canonical measure on the tropicalization of the closed subvariety. Then we can apply the tropical version of equidistribution theory due to Gubler. This article includes an appendix by Walter Gubler. He shows that the minimal dimension of the components of a canonical measure is equal to the dimension of the abelian part of the subvariety. We can apply this result to make a further contribution to the geometric Bogomolov conjecture.Comment: 30 page

    Graphene-based textured surface by pulsed laser deposition as a robust platform for surface enhanced Raman scattering applications

    No full text
    International audienceWe have developed a surface enhanced Raman scattering (SERS)-active substrate based on gold nanoparticles-decorated few-layer (fl) graphene grown by pulsed laser deposition. Diamond-Like Carbon film has been converted to fl-graphene after thermal annealing at low temperature. The formation of fl-graphene was confirmed by Raman spectroscopy, and surface morphology was highlighted by scanning electron microscopy. We found that textured fl-graphene film with nanoscale roughness was highly beneficial for SERS detection. Rhodamine 6G and p-aminothiophenol proposed as test molecules were detected with high sensitivity. The detection at low concentration of deltamethrin, an active molecule of a commercial pesticide was further demonstrated

    Molecular characterisation of Staphylococcus aureus strains isolated from small and large ruminants reveals a host rather than tissue specificity.

    Get PDF
    International audienceStaphylococcus aureus is an important pathogen in domestic ruminants. The main objective of this study was to determine the similarity of epidemiologically unrelated S. aureus isolates from bovine, ovine, and caprine hosts regardless the locus of isolation (nares and udder). By pulsed-field gel electrophoresis, seven major pulsotypes were identified among 153 isolates recovered from 12 different regions of France as well as from Brazil, the USA and Belgium. Typing of the accessory gene regulator (agr) and capsular (cap) serotype was carried out on all the isolates and revealed the predominance of agr I and III and of cap8 regardless the ruminant host species. Screening for methicilin-resistant S. aureus (MRSA) was carried out by disk diffusion and revealed a prevalence of only 3.2% of MRSA among the strains tested. These results suggest the existence of a host rather than tissue specificity among S. aureus isolates colonising the ruminant species and suggest a limited transmission of those isolates between large (bovine) and small (ovine-caprine) ruminants. The agr class and cap types correlated with pulsotype clusters rather than with a specific host species. Antimicrobial resistance appears not to have contributed to the predominance of any given genotypes, and MRSA prevalence appears very low in ruminant isolates

    Characterization of different DLC and DLN electrodes for biosensor design

    No full text
    International audienceDiamond-Like Carbon and Carbon-Like Nanocomposite electrodes, novel materials in the field of biosensors, made with different ratio of sp3/sp2 carbon hybridization or doped with elements such as Ni, Si and W, were characterized electrochemically by cyclic voltammetry and by amperometric measurements towards hydrogen peroxide. SiCAr1 and SiCNi5% were chosen as sensitive transducers for elaboration of amperometric glucose biosensors. Immobilization of glucose oxidase was carried out by cross-linking with glutareldehyde. Measurements were made at a fixed potential + 1.0 V in 40 mM phosphate buffer pH 7.4. SiCAr1 seems to be more sensitive for glucose (0.6875 µA/mM) then SiCNi5% (0.3654 µA/mM). Detections limits were respectively 20 µM and 30 µM. Michaelis-Menten constants for the two electrodes were found around 3 mM. 48% and 79% of the original response for 0.5 mM glucose remained respectively for both electrodes after 10 days

    A 2022 Ď„\tau-Herculid meteor cluster from an airborne experiment: automated detection, characterization, and consequences for meteoroids

    Full text link
    Context. The existence of meteor clusters has long since been a subject of speculation and so far only seven events have been reported, among which two involve less than five meteors, and three were seen during the Leonid storms. Aims. The 1995 outburst of Comet 73P/Schwassmann-Wachmann was predicted to result in a meteor shower in May 2022. We detected the shower, proved this to be the result of this outburst, and detected another meteor cluster during the same observation mission. Methods. The {\tau}-Herculids meteor shower outburst on 31 May 2022 was continuously monitored for 4 hours during an airborne campaign. The video data were analyzed using a recently developed computer-vision processing chain for meteor real-time detection. Results. We report and characterize the detection of a meteor cluster involving 38 fragments, detected at 06:48 UT for a total duration of 11.3 s. The derived cumulative size frequency distribution index is relatively shallow: s = 3.1. Our open-source computer-vision processing chain (named FMDT) detects 100% of the meteors that a human eye is able to detect in the video. Classical automated motion detection assuming a static camera was not suitable for the stabilized camera setup because of residual motion. Conclusions. From all reported meteor clusters, we crudely estimate their occurrence to be less than one per million observed meteors. Low heliocentric distance enhances the probability of such meteoroid self-disruption in the interplanetary space.Comment: 6 pqges, 5 figure

    Electrochemical Boron-Doped Diamond Film Microcells Micromachined with Femtosecond Laser: Application to the Determination of Water Framework Directive Metals

    No full text
    Planar electrochemical microcells were micromachined in a microcrystalline boron-doped diamond (BDD) thin layer using a femtosecond laser (Photo 1). The electrochemical performances of the new laser-machined BDD microcell were assessed by differential pulse anodic stripping voltammetry (DPASV) determinations, at nM level, of the four heavy metal ions of the European Water Framework Directive (WFD): Cd(II), Ni(II), Pb(II), Hg(II). The results are compared with those of previously published BDD electrodes [1]. The calculated detection limits are 0.4 nM, 6.8 nM and 5.5 nm 2.3 nM, and the linearities go up to 35nM, 97nM, 48nM and 5nM for respectively Cd(II), Ni(II) Pb(II) and Hg(II). The detection limits meet with the environmental quality standard of the WFD for three of the four metals. It was shown that the four heavy metals could be detected simultaneously, in the concentration ratio usually measured in sewage or runoff waters

    Structure, electrochemical properties and functionalization of amorphous CN films deposited by femtosecond pulsed laser ablation

    Get PDF
    Amorphous carbon nitride (a-C:N) material has attracted much attention in research and development. Recently, it has become a more promising electrode material than conventional carbon based electrodes in electrochemical and biosensor applications. Nitrogen containing amorphous carbon (a-C:N) thin films have been synthesized by femtosecond pulsed laser deposition (fs-PLD) coupled with plasma assistance through Direct Current (DC) bias power supply. During the deposition process, various nitrogen pressures (0 to 10 Pa) and DC bias (0 to ¿ 350 V) were used in order to explore a wide range of nitrogen content into the films. The structure and chemical composition of the films have been studied by using Raman spectroscopy, electron energy-loss spectroscopy (EELS) and high-resolution transmission electron microscopy (HRTEM). Increasing the nitrogen pressure or adding a DC bias induced an increase of the N content, up to 21 at.%. Nitrogen content increase induces a higher sp2 character of the film. However DC bias has been found to increase the film structural disorder, which was detrimental to the electrochemical properties. Indeed the electrochemical measurements, investigated by cyclic voltammetry (CV), demonstrated that a-C:N film with moderate nitrogen content (10 at.%) exhibited the best behavior, in terms of reversibility and electron transfer kinetics. Electrochemical grafting from diazonium salts was successfully achieved on this film, with a surface coverage of covalently bonded molecules close to the dense packed monolayer of ferrocene molecules. Such a film may be a promising electrode material in electrochemical detection of electroactive pollutants on bare film, and of biopathogen molecules after surface grafting of the specific affinity receptor.This work is produced with the financial support of the Future Program Lyon Saint-Etienne (PALSE) from the University of Lyon (ANR-11-IDEX-0007), under the “Investissements d'Avenir” program managed by the National Agency Research (ANR)

    Development of serological proteome analysis of mastitis by Staphylococcus aureus in ewes.

    Get PDF
    International audienceStaphylococcus aureus is a major agent of mastitis in ruminants worldwide. So far, efficient measures for its prophylaxis (including vaccination) have proven to be unsuccessful and there is a need for a better understanding of the host response to udder infection by S. aureus. Serological proteome analysis (SERPA) is a promising technique that can be used to identify S. aureus immuno-dominant determinants providing that bacterial culture conditions used to grow S. aureus strains for protein sample preparation mimic the context of mastitis. A S. aureus strain was used in experimental mastitis to generate sheep serum used to determine the best growth conditions for SERPA. Sera collected in the field from different ewes suffering from mastitis by S. aureus were used to confirm experimental observations. Three different culture media (BHI, whey and iron-depleted RPMI) were tested. The influence of aeration and growth phase on protein production was also evaluated by immuno-detection of protein samples prepared from cultures grown in different conditions and obtained from different culture fractions (supernatant, cell wall, and total lysates). Our results showed that culturing in iron-depleted RPMI with (secreted proteins, prepared from stationary phase) or without aeration (cell wall proteins, prepared from early stationary phase, and total proteins, prepared from exponential phase) is the condition that best mimics growth in vivo during mastitis and this in vitro growth condition is to be used henceforth in experiments involving SERPA
    • …
    corecore