146 research outputs found

    Effect of dislocations on charge carrier mobility-lifetime product in synthetic single crystal diamond

    Get PDF
    The authors report correlations between variations in charge transport of electrons and holes in synthetic single crystal diamond and the presence of nitrogen impurities and dislocations. The spatial distribution of these defects was imaged using their characteristic luminescence emission and compared with maps of carrier drift length measured by ion beam induced charge imaging. The images indicate a reduction of electron and hole mobility-lifetime product due to nitrogen impurities and dislocations. Very good charge transport is achieved in selected regions where the dislocation density is minimal

    Mg-Ni-H films as selective coatings: tunable reflectance by layered hydrogenation

    Get PDF
    Unlike other switchable mirrors, Mg2NiHx films show large changes in reflection that yield very low reflectance (high absorptance) at different hydrogen contents, far before reaching the semiconducting state. The resulting reflectance patterns are of interference origin, due to a self-organized layered hydrogenation mechanism that starts at the substrate interface, and can therefore be tuned by varying the film thickness. This tunability, together with the high absorptance contrast observed between the solar and the thermal energies, strongly suggests the use of these films in smart coatings for solar applications.Comment: Three two-column pages with 3 figures embedded; RevTE

    Detection of xenoestrogens in serum after immunoprecipitation of endogenous steroidal estrogens.

    Get PDF
    In this article we report a simple and efficient method for detecting nonsteroidal estrogens in a biologic sample. This method uses polyclonal antibodies to estradiol (E2) to immunoprecipitate these major biologically active steroidal estrogens, leaving behind the nonsteroidal estrogens, which are then detected in a cell-based transcriptional activation bioassay for estrogen receptor agonist. The immunoprecipitation method efficiently removed 99% of radiolabeled E2 and estrone (E1) from human serum. In experiments in which supraphysiologic concentrations of E2 and E1 to human serum, all of the immunoreactive estrogens were still removed by the immunoprecipitation protocol. We carried out an in vivo validation study of this method in which we treated female macaques with the xenoestrogen nonylphenol (NP), during the late follicular phase of the menstrual cycle. We used blood samples collected before and after treatment to evaluate and characterize endogenous and exogenous serum estrogens. An immunoassay for E2 did not detect the NP in treated monkeys. The cell-based bioassay also did not detect the estrogenic activity of NP because of its saturation by the endogenous serum steroidal estrogens. However, when steroidal estrogens were removed by immunoprecipitation, we detected the estrogenic activity of NP in the bioassay. Thus, this approach is appropriate for detecting exogenous, nonsteroidal estrogens in serum samples

    Dynamics of porous and amorphous magnesium borohydride to understand solid state Mg-ion-conductors

    Get PDF
    Rechargeable solid-state magnesium batteries are considered for high energy density storage and usage in mobile applications as well as to store energy from intermittent energy sources, triggering intense research for suitable electrode and electrolyte materials. Recently, magnesium borohydride, Mg(BH4_{4})2_{2}, was found to be an effective precursor for solid-state Mg-ion conductors. During the mechanochemical synthesis of these Mg-ion conductors, amorphous Mg(BH4_{4})2_{2} is typically formed and it was postulated that this amorphous phase promotes the conductivity. Here, electrochemical impedance spectroscopy of as-received γ-Mg(BH4_{4})2_{2} and ball milled, amorphous Mg(BH4_{4})2_{2} confirmed that the conductivity of the latter is ~2 orders of magnitude higher than in as-received γ-Mg(BH4_{4})2_{2} at 353 K. Pair distribution function (PDF) analysis of the local structure shows striking similarities up to a length scale of 5.1 Å, suggesting similar conduction pathways in both the crystalline and amorphous sample. Up to 12.27 Å the PDF indicates that a 3D net of interpenetrating channels might still be present in the amorphous phase although less ordered compared to the as-received γ-phase. However, quasi elastic neutron scattering experiments (QENS) were used to study the rotational mobility of the [BH4_{4}] units, revealing a much larger fraction of activated [BH4_{4}] rotations in amorphous Mg(BH4_{4})2_{2}. These findings suggest that the conduction process in amorphous Mg(BH4_{4})2_{2} is supported by stronger rotational mobility, which is proposed to be the so-called “paddle-wheel” mechanism
    corecore