559 research outputs found

    Relativistic spectroscopy of the extreme NLS1 IRAS13224-3809

    Get PDF
    The narrow line Seyfert 1 (NLS1) IRAS 13224-3809 is the most X-ray variable active galactic nucleus (AGN), exhibiting 0.3-10 keV flux changes of over an order of magnitude within an hour. We report on the results of the 1.5 Ms 2016 XMM-Newton/NuSTAR observing campaign, which revealed the presence of a 0.24c ultra-fast outflow in addition to the well-known strong relativistic reflection. We also summarise other key results of the campaign, such as the first detection of a non-linear RMS-flux relation in an accreting source, correlations between outflow absorption strength/velocity and source flux, and a disconnect between the X-ray and UV emission. Our results are consistent with a scenario where a disk wind is launched close to the black hole, imprinting absorption features into the spectrum and variability.Comment: 6 pages, 7 figures, contributed talk at "Revisiting narrow-line Seyfert 1 galaxies and their place in the Universe" (Padova, April 2018). Accepted for publication in Proceedings of Science, PoS(NLS1-2018)03

    Disentangling the Complex Broadband X-ray Spectrum of IRAS 13197-1627 with NuSTAR, XMM-Newton and Suzaku

    Get PDF
    We present results from a coordinated XMMXMM-NewtonNewton+NuSTARNuSTAR observation of the type 1.8 Seyfert galaxy IRAS 13197-1627. This is a highly complex source, with strong contributions from relativistic reflection from the inner accretion disk, neutral absorption and further reprocessing by more distant material, and ionised absorption from an outflow. We undertake a detailed spectral analysis combining the broadband coverage provided by XMMXMM-NewtonNewton+NuSTARNuSTAR with a multi-epoch approach incorporating archival observations performed by XMMXMM-NewtonNewton and SuzakuSuzaku. Our focus is on characterising the reflection from the inner accretion disk, which previous works have suggested may dominate the AGN emission, and constraining the black hole spin. Using lamppost disk reflection models, we find that the results for the inner disk are largely insensitive to assumptions regarding the geometry of the distant reprocessor and the precise form of the illuminating X-ray continuum. However, these results do depend on the treatment of the iron abundance of the distant absorber/reprocessor. The multi-epoch data favour a scenario in which the AGN is chemically homogeneous, and we find that a rapidly rotating black hole is preferred, with a∗≥0.7a^* \geq 0.7, but a slowly-rotating black hole is not strongly excluded. In addition to the results for the inner disk, we also find that both the neutral and ionised absorbers vary from epoch to epoch, implying that both have some degree of inhomogeneity in their structure.Comment: 15 pages, 7 figures, accepted for publication in MNRA

    α\alpha-Scale Decoupling of the Mechanical Relaxation and Diverging Shear Wave Propagation Lengthscale in Triphenylphosphite

    Full text link
    We have performed depolarized Impulsive Stimulated Scattering experiments to observe shear acoustic phonons in supercooled triphenylphosphite (TPP) from ∼\sim10 - 500 MHz. These measurements, in tandem with previously performed longitudinal and shear measurements, permit further analyses of the relaxation dynamics of TPP within the framework of the mode coupling theory (MCT). Our results provide evidence of α\alpha coupling between the shear and longitudinal degrees of freedom up to a decoupling temperature TcT_c = 231 K. A lower bound length scale of shear wave propagation in liquids verified the exponent predicted by theory in the vicinity of the decoupling temperature

    A Hard Look at NGC 5347: Revealing a Nearby Compton-thick AGN

    Get PDF
    Current measurements show that the observed fraction of Compton-thick (CT) active galactic nuclei (AGN) is smaller than the expected values needed to explain the cosmic X-ray background. Prior fits to the X-ray spectrum of the nearby Seyfert-2 galaxy NGC 5347 (z = 0.00792, D = 35.5 Mpc ) have alternately suggested a CT and Compton-thin source. Combining archival data from Suzaku, Chandra, and—most importantly—new data from NuSTAR, ... See full text for complete abstrac

    The Compton hump and variable blue wing in the extreme low-flux NuSTAR observations of 1H0707-495

    Get PDF
    The Narrow-line Seyfert I galaxy, 1H0707-495, has been well observed in the 0.3-10 keV band, revealing a dramatic drop in flux in the iron K alpha band, a strong soft excess, and short timescale reverberation lags associated with these spectral features. In this paper, we present the first results of a deep 250 ks NuSTAR observation of 1H0707-495, which includes the first sensitive observations above 10 keV. Even though the NuSTAR observations caught the source in an extreme low-flux state, the Compton hump is still significantly detected. NuSTAR, with its high effective area above 7 keV, clearly detects the drop in flux in the iron K alpha band, and by comparing these observations with archival XMM-Newton observations, we find that the energy of this drop increases with increasing flux. We discuss possible explanations for this, the most likely of which is that the drop in flux is the blue wing of the relativistically broadened iron K alpha emission line. When the flux is low, the coronal source height is low, thus enhancing the most gravitationally redshifted emission.Comment: Submitted to MNRAS, comments are welcome. 9 pages, 5 figure

    An X-Ray View of the Jet-Cycle in the Radio Loud AGN 3C120

    Full text link
    We present a study of the central engine in the broad-line radio galaxy 3C120 using a multi-epoch analysis of a deep XMM-Newton observation and two deep Suzaku pointings (in 2012). In order to place our spectral data into the context of the disk-disruption/jet-ejection cycles displayed by this object, we monitor the source in the UV/X-ray bands, and in the radio band. We find three statistically acceptable spectral models, a disk-reflection model, a jet-model and a jet+disk model. Despite being good descriptions of the data, the disk-reflection model violates the radio constraints on the inclination, and the jet-model has a fine-tuning problem, requiring a jet contribution exceeding that expected. Thus, we argue for a composite jet+disk model. Within the context of this model, we verify the basic predictions of the jet-cycle paradigm, finding a truncated/refilling disk during the Suzaku observations and a complete disk extending down to the innermost stable circular orbit (ISCO) during the XMM-Newton observation. The idea of a refilling disk is further supported by the detection of the ejection of a new jet knot approximately one month after the Suzaku pointings. We also discover a step-like event in one of the Suzaku pointings in which the soft band lags the hard band. We suggest that we are witnessing the propagation of a disturbance from the disk into the jet on a timescale set by the magnetic field.Comment: 14 pages, 10 figures, accepted for publication in Ap

    Observations of MCG-5-23-16 with Suzaku, XMM-Newton and NuSTAR: Disk tomography and Compton hump reverberation

    Get PDF
    MCG-5-23-16 is one of the first AGN where relativistic reverberation in the iron K line originating in the vicinity of the supermassive black hole was found, based on a short XMM-Newton observation. In this work, we present the results from long X-ray observations using Suzaku, XMM-Newton and NuSTAR designed to map the emission region using X-ray reverberation. A relativistic iron line is detected in the lag spectra on three different time-scales, allowing the emission from different regions around the black hole to be separated. Using NuSTAR coverage of energies above 10 keV reveals a lag between these energies and the primary continuum, which is detected for the first time in an AGN. This lag is a result of the Compton reflection hump responding to changes in the primary source in a manner similar to the response of the relativistic iron K line.Comment: Accepted for Publication in Ap

    NuSTAR Reveals the Comptonizing Corona of the Broad-Line Radio Galaxy 3C 382

    Get PDF
    Broad-line radio galaxies (BLRGs) are active galactic nuclei that produce powerful, large-scale radio jets, but appear as Seyfert 1 galaxies in their optical spectra. In the X-ray band, BLRGs also appear like Seyfert galaxies, but with flatter spectra and weaker reflection features. One explanation for these properties is that the X-ray continuum is diluted by emission from the jet. Here, we present two NuSTAR observations of the BLRG 3C 382 that show clear evidence that the continuum of this source is dominated by thermal Comptonization, as in Seyfert 1 galaxies. The two observations were separated by over a year and found 3C 382 in different states separated by a factor of 1.7 in flux. The lower flux spectrum has a photon-index of Γ=1.68−0.02+0.03\Gamma=1.68^{+0.03}_{-0.02}, while the photon-index of the higher flux spectrum is Γ=1.78−0.03+0.02\Gamma=1.78^{+0.02}_{-0.03}. Thermal and anisotropic Comptonization models provide an excellent fit to both spectra and show that the coronal plasma cooled from kTe=330±30kT_e=330\pm 30 keV in the low flux data to 231−88+50231^{+50}_{-88} keV in the high flux observation. This cooling behavior is typical of Comptonizing corona in Seyfert galaxies and is distinct from the variations observed in jet-dominated sources. In the high flux observation, simultaneous Swift data are leveraged to obtain a broadband spectral energy distribution and indicates that the corona intercepts ∼10\sim 10% of the optical and ultraviolet emitting accretion disk. 3C 382 exhibits very weak reflection features, with no detectable relativistic Fe Kα\alpha line, that may be best explained by an outflowing corona combined with an ionized inner accretion disk.Comment: 8 pages, 8 figures, accepted by Ap
    • …
    corecore