494 research outputs found

    Phenotype of apoptotic lymphocytes in children with Down syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Down syndrome (DS) is the most common and best-known chromosomal disorder and is associated with several other pathologic conditions including immunodeficiency which makes a significant contribution to morbidity and mortality. Various immunological theories and observations to explain the predisposition of individuals with DS to various infections have been published, one of which is increased apoptotic cells.</p> <p>Aim</p> <p>The aim of this study was to identify the effect of apoptosis on both types of cells of specific immune response (T and B lymphocytes) in children with DS using Annexin V staining of phosphatidyserine (PS) as a specific marker of early apoptosis.</p> <p>Subjects and methods</p> <p>The study included 17 children with karyotypically ascertained DS (7 males and 10 females). Their ages ranged from 4 months to 14 years with mean age of 5.7 ± 4.35 years. Seventeen age and sex matched healthy children were included in the study as controls. Patients or controls with infections were excluded from the study. Complete blood picture, immunophenotyping, analysis of apoptosis using Annexin V was done at National cancer Institute to all children included in this study.</p> <p>Results</p> <p>Although CBC, differential count, relative and absolute number of CD<sup>3+ </sup>and CD<sup>16+ </sup>did not show significant differences between DS children and control group, the relative and the absolute size of apoptotic CD<sup>3+ </sup>T lymphocytes, and the relative size of apoptotic CD<sup>19+ </sup>B lymphocytes were significantly higher in DS children than in controls. On the other hand, no significant difference was detected as regards the absolute size of CD<sup>19+ </sup>B lymphocytes in DS children and in controls</p> <p>Conclusion</p> <p>our finding of increased early apoptotic cells (especially T cells) in DS children may emphasize the fact that the function of cells- and not their number- is main mechanism responsible for the impairment of the immune system in DS children and may further add to the known fact that cellular immunity is more severely affected than humoral immunity in these children. Further studies on apoptotic cellular phenotype in larger number of DS are needed</p

    Long-term outcome and patterns of failure in patients with advanced head and neck cancer

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To access the long-time outcome and patterns of failure in patients with advanced head and neck squamous cell carcinoma (HNSCC).</p> <p>Methods and materials</p> <p>Between 1992 and 2005 127 patients (median age 55 years, UICC stage III n = 6, stage IV n = 121) with primarily inoperable, advanced HNSCC were treated with definite platinum-based radiochemotherapy (median dose 66.4 Gy). Analysed end-points were overall survival (OS), disease-free survival (DFS), loco-regional progression-free survival (LPFS), development of distant metastases (DM), prognostic factors and causes of death.</p> <p>Results</p> <p>The mean follow-up time was 34 months (range, 3-156 months), the 3-, 5- and 10-year OS rates were 39%, 28% and 14%, respectively. The median OS was 23 months. Forty-seven patients achieved a complete remission and 78 patients a partial remission. The median LPFS was 17 months, the 3-, 5- and 10-year LPFS rates were 41%, 33% and 30%, respectively. The LPFS was dependent on the nodal stage (p = 0.029). The median DFS was 11 months (range, 2-156 months), the 3-, 5- and 10-year DFS rates were 30%, 24% and 22%, respectively. Prognostic factors in univariate analyses were alcohol abuse (n = 102, p = 0.015), complete remission (n = 47, p < 0.001), local recurrence (n = 71, p < 0.001), development of DM (n = 45, p < 0.001; median OS 16 months) and borderline significance in nodal stage N2 versus N3 (p = 0.06). Median OS was 26 months with lung metastases (n = 17). Nodal stage was a predictive factor for the development of DM (p = 0.025). Cause of death was most commonly tumor progression.</p> <p>Conclusions</p> <p>In stage IV HNSCC long-term survival is rare and DM is a significant predictor for mortality. If patients developed DM, lung metastases had the most favourable prognosis, so intensified palliative treatment might be justified in DM limited to the lungs.</p

    Haematopoietic SCT in severe autoimmune diseases: updated guidelines of the European Group for Blood and Marrow Transplantation

    Get PDF
    In 1997, the first consensus guidelines for haematopoietic SCT (HSCT) in autoimmune diseases (ADs) were published, while an international coordinated clinical programme was launched. These guidelines provided broad principles for the field over the following decade and were accompanied by comprehensive data collection in the European Group for Blood and Marrow Transplantation (EBMT) AD Registry. Subsequently, retrospective analyses and prospective phase I/II studies generated evidence to support the feasibility, safety and efficacy of HSCT in several types of severe, treatment-resistant ADs, which became the basis for larger-scale phase II and III studies. In parallel, there has also been an era of immense progress in biological therapy in ADs. The aim of this document is to provide revised and updated guidelines for both the current application and future development of HSCT in ADs in relation to the benefits, risks and health economic considerations of other modern treatments. Patient safety considerations are central to guidance on patient selection and HSCT procedural aspects within appropriately experienced and Joint Accreditation Committee of International Society for Cellular Therapy and EBMT accredited centres. A need for prospective interventional and non-interventional studies, where feasible, along with systematic data reporting, in accordance with EBMT policies and procedures, is emphasized

    Epistasis of Transcriptomes Reveals Synergism between Transcriptional Activators Hnf1α and Hnf4α

    Get PDF
    The transcription of individual genes is determined by combinatorial interactions between DNA–binding transcription factors. The current challenge is to understand how such combinatorial interactions regulate broad genetic programs that underlie cellular functions and disease. The transcription factors Hnf1α and Hnf4α control pancreatic islet β-cell function and growth, and mutations in their genes cause closely related forms of diabetes. We have now exploited genetic epistasis to examine how Hnf1α and Hnf4α functionally interact in pancreatic islets. Expression profiling in islets from either Hnf1a+/− or pancreas-specific Hnf4a mutant mice showed that the two transcription factors regulate a strikingly similar set of genes. We integrated expression and genomic binding studies and show that the shared transcriptional phenotype of these two mutant models is linked to common direct targets, rather than to known effects of Hnf1α on Hnf4a gene transcription. Epistasis analysis with transcriptomes of single- and double-mutant islets revealed that Hnf1α and Hnf4α regulate common targets synergistically. Hnf1α binding in Hnf4a-deficient islets was decreased in selected targets, but remained unaltered in others, thus suggesting that the mechanisms for synergistic regulation are gene-specific. These findings provide an in vivo strategy to study combinatorial gene regulation and reveal how Hnf1α and Hnf4α control a common islet-cell regulatory program that is defective in human monogenic diabetes

    Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation

    Get PDF
    Graphene oxide (GO) membranes continue to attract intense interest due to their unique molecular sieving properties combined with fast permeation. However, their use is limited to aqueous solutions because GO membranes appear impermeable to organic solvents, a phenomenon not yet fully understood. Here, we report efficient and fast filtration of organic solutions through GO laminates containing smooth two-dimensional (2D) capillaries made from large (10-20 μm) flakes. Without modification of sieving characteristics, these membranes can be made exceptionally thin, down to â 1/410 nm, which translates into fast water and organic solvent permeation. We attribute organic solvent permeation and sieving properties to randomly distributed pinholes interconnected by short graphene channels with a width of 1 nm. With increasing membrane thickness, organic solvent permeation rates decay exponentially but water continues to permeate quickly, in agreement with previous reports. The potential of ultrathin GO laminates for organic solvent nanofiltration is demonstrated by showing >99.9% rejection of small molecular weight organic dyes dissolved in methanol. Our work significantly expands possibilities for the use of GO membranes in purification and filtration technologies

    New Insights into the Role of MHC Diversity in Devil Facial Tumour Disease

    Get PDF
    Devil facial tumour disease (DFTD) is a fatal contagious cancer that has decimated Tasmanian devil populations. The tumour has spread without invoking immune responses, possibly due to low levels of Major Histocompatibility Complex (MHC) diversity in Tasmanian devils. Animals from a region in north-western Tasmania have lower infection rates than those in the east of the state. This area is a genetic transition zone between sub-populations, with individuals from north-western Tasmania displaying greater diversity than eastern devils at MHC genes, primarily through MHC class I gene copy number variation. Here we test the hypothesis that animals that remain healthy and tumour free show predictable differences at MHC loci compared to animals that develop the disease

    Identification of CRISPR and riboswitch related RNAs among novel noncoding RNAs of the euryarchaeon Pyrococcus abyssi

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Noncoding RNA (ncRNA) has been recognized as an important regulator of gene expression networks in Bacteria and Eucaryota. Little is known about ncRNA in thermococcal archaea except for the eukaryotic-like C/D and H/ACA modification guide RNAs.</p> <p>Results</p> <p>Using a combination of <it>in silico </it>and experimental approaches, we identified and characterized novel <it>P</it>. <it>abyssi </it>ncRNAs transcribed from 12 intergenic regions, ten of which are conserved throughout the Thermococcales. Several of them accumulate in the late-exponential phase of growth. Analysis of the genomic context and sequence conservation amongst related thermococcal species revealed two novel <it>P</it>. <it>abyssi </it>ncRNA families. The CRISPR family is comprised of crRNAs expressed from two of the four <it>P</it>. <it>abyssi </it>CRISPR cassettes. The 5'UTR derived family includes four conserved ncRNAs, two of which have features similar to known bacterial riboswitches. Several of the novel ncRNAs have sequence similarities to orphan OrfB transposase elements. Based on RNA secondary structure predictions and experimental results, we show that three of the twelve ncRNAs include Kink-turn RNA motifs, arguing for a biological role of these ncRNAs in the cell. Furthermore, our results show that several of the ncRNAs are subjected to processing events by enzymes that remain to be identified and characterized.</p> <p>Conclusions</p> <p>This work proposes a revised annotation of CRISPR loci in <it>P</it>. <it>abyssi </it>and expands our knowledge of ncRNAs in the Thermococcales, thus providing a starting point for studies needed to elucidate their biological function.</p

    Establishment of Rat Embryonic Stem Cells and Making of Chimera Rats

    Get PDF
    The rat is a reference animal model for physiological studies and for the analysis of multigenic human diseases such as hypertension, diabetes, neurological disorders, and cancer. The rats have long been used in extensive chemical carcinogenesis studies. Thus, the rat embryonic stem (rES) cell is an important resource for the study of disease models. Attempts to derive ES cells from various mammals, including the rat, have not succeeded. Here we have established two independent rES cells from Wister rat blastocysts that have undifferentiated characters such as Nanog and Oct3/4 genes expression and they have stage-specific embryonic antigen (SSEA) -1, -3, -4, and TRA-1-81 expression. The cells were successfully cultured in an undifferentiated state and can be possible over 18 passages with maintaining more than 40% of normal karyotype. Their pluripotent potential was confirmed by the differentiation into derivatives of the endoderm, mesoderm, and ectoderm. Most importantly, the rES cells are capable of producing chimera rats. Therefore, we established pluripotent rES cell lines that are widely used to produce genetically modified experimental rats for study of human diseases
    corecore