22 research outputs found

    LEO to GEO (and Beyond) Transfers Using High Power Solar Electric Propulsion (HP-SEP)

    Get PDF
    Rideshare, or Multi-Payload launch configurations, are becoming more and more commonplace but access to space is only one part of the overall mission needs. The ability for payloads to achieve their target orbits or destinations can still be difficult and potentially not feasible with on-board propulsion limitations. The High Power Solar Electric Propulsion (HP-SEP) Orbital Maneuvering Vehicle (OMV) provides transfer capabilities for both large and small payload in excess of what is possible with chemical propulsion. Leveraging existing secondary payload adapter technology like the ESPA provides a platform to support Multi-Payload launch and missions. When coupled with HP-SEP, meaning greater than 30 kW system power, very large delta-V maneuvers can be accomplished. The HP-SEP OMV concept is designed to perform a Low Earth Orbit to Geosynchronous Orbit (LEO-GEO) transfer of up to six payloads each with 300kg mass. The OMV has enough capability to perform this 6 kms maneuver and have residual capacity to extend an additional transfer from GEO to Lunar orbit. This high deltaV capability is achieved using state of the art 12.5kW Hall Effect Thrusters (HET) coupled with high power roll up solar arrays. The HP-SEP OMV also provides a demonstration platform for other SEP technologies such as advanced Power Processing Units (PPU), Xenon Feed Systems (XFS), and other HET technologies. The HP-SEP OMV platform can be leveraged for other missions as well such as interplanetary science missions and applications for resilient space architectures

    Hyperthermia Induces Functional and Molecular Modifications in Cardiac, Smooth and Skeletal Muscle Cells

    Get PDF
    Comparative Medicine - OneHealth and Comparative Medicine Poster SessionHyperthermia is used for the treatment of a number of diseases, including muscle injuries, inflammations, tendinitis, and osteoarticular disorder. More recently, hyperthermia has been used as an adjuvant in cancer treatment. Only two studies have shown that hyperthermia leads to hypertrophy in in-vitro models of cardiac and skeletal muscle cells. Functional, biochemical and molecular mechanisms of hyperthermia-induced hypertrophy in muscles remain largely undiscovered. We investigated the effects of mild heat shock (HS) on C2C12 skeletal, HL-1 cardiac and AR-75 smooth muscle cells. Mild HS (20 min 43ºC) induced increases in the cell area in all muscle cells tested. C2C12 cells are a well-accepted model of skeletal muscle fibers, and were selected for complementary studies. First, to biochemically confirm an increase in protein synthesis we measured and found an increase of ~6% in total protein content 24 hrs after HS. Second, we examined potential modifications in calcium (Ca) homeostasis regulation by measuring intracellular Ca. We detected a lower resting level of intracellular Ca and smaller and longer caffeine-induced Ca transients in C2C12 muscle cells 24 hrs after HS. Next, to search for molecular mechanisms involved with HS-induced hypertrophy and calcium homeostasis modifications, mRNA from C2C12 muscle cells was analyzed at different time points after HS (0, 1, 2, and 24 hrs). We used an ABI Step One Plus RT2 PCR Array System and a custom-built 96 gene array. We report for the first time that the expression of key heat-shock, hypertrophy/ metabolic, and Ca+2 signaling genes were altered after HS. Hsp70 and Hsp72 genes were highly expressed (211-1829 fold change) after HS. Also, Myh7 (MHC-I), Myh6, Srf, Ppp3r1 and Pck1 were up-regulated by 2-6 fold change compared with control cells.. Furthermore, a reduction in the expression of RyR and Trdn genes was observed (2- 3.6 fold change) with an associated increase in the expression of IP3R genes (2-4 fold change). These results indicate that hyperthermia modulates not only heat-shock related and hypertrophy genes, but also genes involved with metabolism, apoptosis repression, calcium homeostasis and signaling, and cell homeostasis. Our studies offer an initial exploration of the functional, biochemical and molecular mechanisms that may help explain the beneficially adaptive effects of hyperthermia on muscle function. Our studies shall also prove useful for the refinement of a specific device (EM-Stim) to be employed for the treatment of muscle and bone diseases (See poster by Hatem et al). Importantly, our studies have potential translational applications. By learning how to more precisely use hyperthermia to control specific genes that can improve or treat muscle injuries, musculoskeletal, and cardiovascular diseases, the ensuing benefits shall be unmistakable. Our short and long-term goals are: i) optimize our protocols; ii) test HS in animal models; iii) manipulate expression of promising genes of interest in vitro and in in-vivo animal models; iv) initiate clinical studies to fully translate from the bench to the bed-side

    Profiling extracellular vesicle release by the filarial nematode Brugia malayi reveals sex-specific differences in cargo and a sensitivity to ivermectin

    Get PDF
    The filarial nematode Brugia malayi is an etiological agent of Lymphatic Filariasis. The capability of B. malayi and other parasitic nematodes to modulate host biology is recognized but the mechanisms by which such manipulation occurs are obscure. An emerging paradigm is the release of parasite-derived extracellular vesicles (EV) containing bioactive proteins and small RNA species that allow secretion of parasite effector molecules and their potential trafficking to host tissues. We have previously described EV release from the infectious L3 stage B. malayi and here we profile vesicle release across all intra-mammalian life cycle stages (microfilariae, L3, L4, adult male and female worms). Nanoparticle Tracking Analysis was used to quantify and size EVs revealing discrete vesicle populations and indicating a secretory process that is conserved across the life cycle. Brugia EVs are internalized by murine macrophages with no preference for life stage suggesting a uniform mechanism for effector molecule trafficking. Further, the use of chemical uptake inhibitors suggests all life stage EVs are internalized by phagocytosis. Proteomic profiling of adult male and female EVs using nano-scale LC-MS/MS described quantitative and qualitative differences in the adult EV proteome, helping define the biogenesis of Brugia EVs and revealing sexual dimorphic characteristics in immunomodulatory cargo. Finally, ivermectin was found to rapidly inhibit EV release by all Brugia life stages. Further this drug effect was also observed in the related filarial nematode, the canine heartworm Dirofilaria immitis but not in an ivermectin-unresponsive field isolate of that parasite, highlighting a potential mechanism of action for this drug and suggesting new screening platforms for anti-filarial drug development.This article is published as Harischandra, Hiruni, Wang Yuan, Hannah J. Loghry, Mostafa Zamanian, and Michael J. Kimber. "Profiling extracellular vesicle release by the filarial nematode Brugia malayi reveals sex-specific differences in cargo and a sensitivity to ivermectin." PLoS Neglected Tropical Diseases 12, no. 4 (2018): e0006438. DOI:10.1371/journal.pntd.0006438. Posted with permission.</p

    Profiling extracellular vesicle release by the filarial nematode <i>Brugia malayi</i> reveals sex-specific differences in cargo and a sensitivity to ivermectin

    Get PDF
    <div><p>The filarial nematode <i>Brugia malayi</i> is an etiological agent of Lymphatic Filariasis. The capability of <i>B</i>. <i>malayi</i> and other parasitic nematodes to modulate host biology is recognized but the mechanisms by which such manipulation occurs are obscure. An emerging paradigm is the release of parasite-derived extracellular vesicles (EV) containing bioactive proteins and small RNA species that allow secretion of parasite effector molecules and their potential trafficking to host tissues. We have previously described EV release from the infectious L3 stage <i>B</i>. <i>malayi</i> and here we profile vesicle release across all intra-mammalian life cycle stages (microfilariae, L3, L4, adult male and female worms). Nanoparticle Tracking Analysis was used to quantify and size EVs revealing discrete vesicle populations and indicating a secretory process that is conserved across the life cycle. <i>Brugia</i> EVs are internalized by murine macrophages with no preference for life stage suggesting a uniform mechanism for effector molecule trafficking. Further, the use of chemical uptake inhibitors suggests all life stage EVs are internalized by phagocytosis. Proteomic profiling of adult male and female EVs using nano-scale LC-MS/MS described quantitative and qualitative differences in the adult EV proteome, helping define the biogenesis of <i>Brugia</i> EVs and revealing sexual dimorphic characteristics in immunomodulatory cargo. Finally, ivermectin was found to rapidly inhibit EV release by all <i>Brugia</i> life stages. Further this drug effect was also observed in the related filarial nematode, the canine heartworm <i>Dirofilaria immitis</i> but not in an ivermectin-unresponsive field isolate of that parasite, highlighting a potential mechanism of action for this drug and suggesting new screening platforms for anti-filarial drug development.</p></div

    Secreted filarial nematode galectins modulate host immune cells

    Get PDF
    Lymphatic filariasis (LF) is a mosquito-borne disease caused by filarial nematodes including Brugia malayi. Over 860 million people worldwide are infected or at risk of infection in 72 endemic countries. The absence of a protective vaccine means that current control strategies rely on mass drug administration programs that utilize inadequate drugs that cannot effectively kill adult parasites, thus established infections are incurable. Progress to address deficiencies in the approach to LF control is hindered by a poor mechanistic understanding of host-parasite interactions, including mechanisms of host immunomodulation by the parasite, a critical adaptation for establishing and maintaining infections. The canonical type 2 host response to helminth infection characterized by anti-inflammatory and regulatory immune phenotypes is modified by filarial nematodes during chronic LF. Current efforts at identifying parasite-derived factors driving this modification focus on parasite excretory-secretory products (ESP), including extracellular vesicles (EVs). We have previously profiled the cargo of B. malayi EVs and identified B. malayi galectin-1 and galectin-2 as among the most abundant EV proteins. In this study we further investigated the function of these proteins. Sequence analysis of the parasite galectins revealed highest homology to mammalian galectin-9 and functional characterization identified similar substrate affinities consistent with this designation. Immunological assays showed that Bma-LEC-2 is a bioactive protein that can polarize macrophages to an alternatively activated phenotype and selectively induce apoptosis in Th1 cells. Our data shows that an abundantly secreted parasite galectin is immunomodulatory and induces phenotypes consistent with the modified type 2 response characteristic of chronic LF infection.This article is published as Loghry HJ, Sondjaja NA, Minkler SJ and Kimber MJ (2022) Secreted filarial nematode galectins modulate host immune cells. Front. Immunol. 13:952104. DOI: 10.3389/fimmu.2022.952104. Copyright 2022 Loghry, Sondjaja, Minkler and Kimber. Attribution 4.0 International (CC BY 4.0). Posted with permission

    Towards nanovesicle-based disease diagnostics: a rapid single-step exosome assay within one hour through in situ immunomagnetic extraction and nanophotonic label-free detection

    Get PDF
    Exosomes have been considered as high-quality biomarkers for disease diagnosis, as they are secreted by cells into extracellular environments as nanovesicles with rich and unique molecular information, and can be isolated and enriched from clinical samples. However, most existing exosome assays, to date, require time-consuming isolation and purification procedures; the detection specificity and sensitivity are also in need of improvement for the realization of exosome-based disease diagnostics. This paper reports a unique exosome assay technology that enables completing both magnetic nanoparticle (MNP)-based exosome extraction and high-sensitivity photonic crystal (PC)-based label-free exosome detection in a single miniature vessel within one hour, while providing an improved sensitivity and selectivity. High specificity of the assay to membrane antigens is realized by functionalizing both the MNPs and the PC with specific antibodies. A low limit of detection on the order of 107 exosome particles per milliliter (volume) is achieved because the conjugated MNP–exosome nanocomplexes offer a larger index change on the PC surface, compared to the exosomes alone without using MNPs. Briefly, the single-step exosome assay involves (i) forming specific MNP–exosome nanocomplexes to enrich exosomes from complex samples directly on the PC surface at the bottom of the vessel, with a >500 enrichment factor, and (ii) subsequently, performing in situ quantification of the nanocomplexes using the PC biosensor. The present exosome assay method is validated in analyzing multiple membrane proteins of exosomes derived from murine macrophage cells with high selectivity and sensitivity, while requiring only about one hour. This assay technology will provide great potential for exosome-based disease diagnostics.This article is published as Zhang, Qinming, Hannah J. Loghry, Jingjing Qian, Michael J. Kimber, Liang Dong, and Meng Lu. "Towards nanovesicle-based disease diagnostics: a rapid single-step exosome assay within one hour through in situ immunomagnetic extraction and nanophotonic label-free detection." Lab on a Chip 21, no. 18 (2021): 3541-3549. DOI: 10.1039/D1LC00446H. Copyright 2021 The Royal Society of Chemistry. Attribution-NonCommercial 3.0 Unported (CC BY-NC 3.0). Posted with permission

    Expression and Secretion of Circular RNAs in the Parasitic Nematode, Ascaris suum

    Get PDF
    Circular RNAs (circRNAs) are a recently identified RNA species with emerging functional roles as microRNA (miRNA) and protein sponges, regulators of gene transcription and translation, and modulators of fundamental biological processes including immunoregulation. Relevant to this study, circRNAs have recently been described in the parasitic nematode, Haemonchus contortus, suggesting they may have functionally important roles in parasites. Given their involvement in regulating biological processes, a better understanding of their role in parasites could be leveraged for future control efforts. Here, we report the use of next-generation sequencing to identify 1,997 distinct circRNAs expressed in adult female stages of the gastrointestinal parasitic nematode, Ascaris suum. We describe spatial expression in the ovary-enriched and body wall muscle, and also report circRNA presence in extracellular vesicles (EVs) secreted by the parasite into the external environment. Further, we used an in-silico approach to predict that a subset of Ascaris circRNAs bind both endogenous parasite miRNAs as well as human host miRNAs, suggesting they could be functional as both endogenous and exogenous miRNA sponges to alter gene expression. There was not a strong correlation between Ascaris circRNA length and endogenous miRNA interactions, indicating Ascaris circRNAs are enriched for Ascaris miRNA binding sites, but that human miRNAs were predicted form a more thermodynamically stable bond with Ascaris circRNAs. These results suggest that secreted circRNAs could be interacting with host miRNAs at the host-parasite interface and influencing host gene transcription. Lastly, although we have previously found that therapeutically relevant concentrations of the anthelmintic drug ivermectin inhibited EV release from parasitic nematodes, we did not observe a direct effect of ivermectin treatment on Ascaris circRNAs expression or secretion.This article is published as Minkler SJ, Loghry-Jansen HJ, Sondjaja NA and Kimber MJ (2022) Expression and Secretion of Circular RNAs in the Parasitic Nematode, Ascaris suum. Front. Genet. 13:884052. DOI: 10.3389/fgene.2022.884052. Copyright 2022 Minkler, Loghry-Jansen, Sondjaja and Kimber. Attribution 4.0 International (CC BY 4.0). Posted with permission

    Ivermectin inhibits extracellular vesicle secretion from parasitic nematodes

    No full text
    Lymphatic filariasis (LF) is a disease caused by parasitic filarial nematodes that is endemic in 49 countries of the world and affects or threatens over 890 million people. Strategies to control LF rely heavily on mass administration of anthelmintic drugs including ivermectin (IVM), a macrocyclic lactone drug considered an Essential Medicine by the WHO. However, despite its widespread use the therapeutic mode of action of IVM against filarial nematodes is not clear. We have previously reported that filarial nematodes secrete extracellular vesicles (EVs) and that their cargo has immunomodulatory properties. Here we investigate the effects of IVM and other anti-filarial drugs on parasitic nematode EV secretion, motility, and protein secretion. We show that inhibition of EV secretion was a specific property of IVM, which had consistent and significant inhibitory effects across nematode life stages and species, with the exception of male parasites. IVM inhibited EV secretion, but not parasite motility, at therapeutically relevant concentrations. Protein secretion was inhibited by IVM in the microfilariae stage, but not in any other stage tested. Our data provides evidence that inhibiting the secretion of immunomodulatory EVs by parasitic nematodes could explain, at least in part, IVM mode of action and provides a phenotype for novel drug discovery.This is the published version of the following article: Loghry, Hannah J., Wang Yuan, Mostafa Zamanian, Nicolas J. Wheeler, Timothy A. Day, and Michael J. Kimber. "Ivermectin inhibits extracellular vesicle secretion from parasitic nematodes." Journal of Extracellular Vesicles 10, no. 2 (2020): e12036. DOI: 10.1002/jev2.12036. Copyright 2020 The Authors. Attribution 4.0 International (CC BY 4.0). Posted with permission

    Murine macrophages internalize parasite-derived EV by phagocytosis.

    No full text
    <p>Imaris 3D reconstructed confocal micrographs of murine J774A.1 macrophages. (A) Control macrophages showing internalization of PKH67-labeled EV (green) isolated from microfilaria (mf), L3, adult male (AM) and adult female (AF) worms in parallel with Fluoresbrite Carboxylate Microspheres (red, phagocytosis tracer). Macrophages are counterstained with Hoechst 33342 (nuclei, blue) and phalloidin (muscle, purple). (B) Macrophages treated with labeled EV (green) and microspheres (red) in the presence of 200 μM Dynasore. Absence of green and red indicates internalization of both EV and tracer are blocked. (C) Macrophages treated with labeled EV (green) and Alexa Fluor 555 conjugated transferrin (tracer, red) in the presence of 30 μM Chlorpromazine. Presence of green and absence of red indicates internalization of tracer is blocked but EV is not. (D) Macrophages treated with labeled EV (green) and Alexa Fluor 555 conjugated cholera toxin b (tracer, red) in the presence of 300 μM Genistein. Presence of green and general absence of red indicates internalization of tracer is generally blocked but EV is not. All Imaris images captured at magnification 68X, all scale bars 2 μm.</p
    corecore