468 research outputs found

    Adolescent and Young Adult Substance Use: Association with Sensation Seeking, Self Esteem and Retrospective Report of Early Pubertal Onset. A Preliminary Examination

    Get PDF
    Structured questionnaires were administered to investigate the relationship between early pubertal onset, substance abuse, sensation seeking, and self-esteem. The current study presents data from 1,002 subjects, who were followed from the 6th to the 10th grades and again at the age of 20. In females, early pubertal onset was associated with greater cigarette use and lower self-esteem. Further the interaction of early pubertal onset and low self-esteem was predictive for cigarette use in females, as was early pubertal onset and high sensation seeking. Late pubertal onset was associated with decreased alcohol use and lower sensation seeking in males, with the opposite trends for early pubertal onset. These interrelationships must be considered when attempting to understand and identify early adolescent initiation of substance abuse

    Hydrolytic Degradation of 3D-Printed Poly (Lactic Acid) Structures

    Get PDF
    Hydrolytic degradation of commercially available 3D printing filament, i.e. poly (lactic acid) with broad molecular weight distribution was induced by incubating 3D-printed parts in deionized water at 3 temperatures. Small changes in orthogonal dimensions occurred due to relaxation of printing stresses, but no mass or volume loss were detected over the time-frame of the experiments. Molecular weight decreased while polydispersity remained constant. The most sensitive measure of degradation was found to be nondestructive, small-amplitude oscillatory tensile measurements. A rapid decay of tensile storage modulus was found with an exponential decay time constant of about an hour. This work demonstrates that practical monitoring of commercially available PLA degradation can be achieve with linear viscoelastic measurements of modulus

    Forest Composition Change and Biophysical Climate Feedbacks Across Boreal North America

    Get PDF
    Deciduous tree cover is expected to increase in North American boreal forests with climate warming and wildfire. This shift in composition has the potential to generate biophysical cooling via increased land surface albedo. Here we use Landsat-derived maps of continuous tree canopy cover and deciduous fractional composition to assess albedo change over recent decades. We find, on average, a small net decrease in deciduous fraction from 2000 to 2015 across boreal North America and from 1992 to 2015 across Canada, despite extensive fire disturbance that locally increased deciduous vegetation. We further find near-neutral net biophysical change in radiative forcing associated with albedo when aggregated across the domain. Thus, while there have been widespread changes in forest composition over the past several decades, the net changes in composition and associated post-fire radiative forcing have not induced systematic negative feedbacks to climate warming over the spatial and temporal scope of our study

    A sensitive mass spectrometric assay for mitochondrial CoQ pool redox state in vivo.

    Get PDF
    Coenzyme Q (CoQ) is an essential cofactor, primarily found in the mitochondrial inner membrane where it functions as an electron carrier in the respiratory chain, and as a lipophilic antioxidant. The redox state of the CoQ pool is the ratio of its oxidised (ubiquinone) and reduced (ubiquinol) forms, and is a key indicator of mitochondrial bioenergetic and antioxidant status. However, the role of CoQ redox state in vivo is poorly understood, because determining its value is technically challenging due to redox changes during isolation, extraction and analysis. To address these problems, we have developed a sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay that enables us to extract and analyse both the CoQ redox state and the magnitude of the CoQ pool with negligible changes to redox state from small amounts of tissue. This will enable the physiological and pathophysiological roles of the CoQ redox state to be investigated in vivo

    A sensitive mass spectrometric assay for mitochondrial CoQ pool redox state in vivo

    Get PDF
    Coenzyme Q (CoQ) is an essential cofactor, primarily found in the mitochondrial inner membrane where it functions as an electron carrier in the respiratory chain, and a lipophilic antioxidant. The redox state of the CoQ pool is the ratio of its oxidised (ubiquinone) and reduced (ubiquinol) forms, and is a key indicator of mitochondrial bioenergetic and antioxidant status. However, the role of CoQ redox state in vivo is poorly understood, because determining its value is technically challenging due to redox changes during isolation, extraction and analysis. To address these problems, we have developed a sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay that enables us to extract and analyse both the CoQ redox state and the magnitude of the CoQ pool with negligible changes to redox state from small amounts of tissue. This will enable the physiological and pathophysiological roles of the CoQ redox state to be investigated in vivo

    GPCR-styrene maleic acid lipid particles (GPCR-SMALPs):their nature and potential

    Get PDF
    G-protein-coupled receptors (GPCRs) form the largest class of membrane proteins and are an important target for therapeutic drugs. These receptors are highly dynamic proteins sampling a range of conformational states in order to fulfil their complex signalling roles. In order to fully understand GPCR signalling mechanisms it is necessary to extract the receptor protein out of the plasma membrane. Historically this has universally required detergents which inadvertently strip away the annulus of lipid in close association with the receptor and disrupt lateral pressure exerted by the bilayer. Detergent-solubilized GPCRs are very unstable which presents a serious hurdle to characterization by biophysical methods. A range of strategies have been developed to ameliorate the detrimental effect of removing the receptor from the membrane including amphipols and reconstitution into nanodics stabilized by membrane scaffolding proteins (MSPs) but they all require exposure to detergent. Poly(styrene-co-maleic acid) (SMA) incorporates into membranes and spontaneously forms nanoscale poly(styrene-co-maleic acid) lipid particles (SMALPs), effectively acting like a 'molecular pastry cutter' to 'solubilize' GPCRs in the complete absence of detergent at any stage and with preservation of the native annular lipid throughout the process. GPCR-SMALPs have similar pharmacological properties to membrane-bound receptor, exhibit enhanced stability compared with detergent-solubilized receptors and being non-proteinaceous in nature, are fully compatible with downstream biophysical analysis of the encapsulated GPCR

    MitoNeoD:a mitochondria-targeted superoxide probe

    Get PDF
    Mitochondrial superoxide (O2⋅−) underlies much oxidative damage and redox signaling. Fluorescent probes can detect O2⋅−, but are of limited applicability in vivo, while in cells their usefulness is constrained by side reactions and DNA intercalation. To overcome these limitations, we developed a dual-purpose mitochondrial O2⋅− probe, MitoNeoD, which can assess O2⋅− changes in vivo by mass spectrometry and in vitro by fluorescence. MitoNeoD comprises a O2⋅−-sensitive reduced phenanthridinium moiety modified to prevent DNA intercalation, as well as a carbon-deuterium bond to enhance its selectivity for O2⋅− over non-specific oxidation, and a triphenylphosphonium lipophilic cation moiety leading to the rapid accumulation within mitochondria. We demonstrated that MitoNeoD was a versatile and robust probe to assess changes in mitochondrial O2⋅− from isolated mitochondria to animal models, thus offering a way to examine the many roles of mitochondrial O2⋅−production in health and disease

    Using exomarkers to assess mitochondrial reactive species in vivo

    Get PDF
    Background: The ability to measure the concentrations of small damaging and signalling molecules such as reactive oxygen species (ROS) in vivo is essential to understanding their biological roles. While a range of methods can be applied to in vitro systems, measuring the levels and relative changes in reactive species in vivo is challenging. Scope of review: One approach towards achieving this goal is the use of exomarkers. In this, exogenous probe compounds are administered to the intact organism and are then transformed by the reactive molecules in vivo to produce a diagnostic exomarker. The exomarker and the precursor probe can be analysed ex vivo to infer the identity and amounts of the reactive species present in vivo. This is akin to the measurement of biomarkers produced by the interaction of reactive species with endogenous biomolecules. Major conclusions and general significance: Our laboratories have developed mitochondria-targeted probes that generate exomarkers that can be analysed ex vivo by mass spectrometry to assess levels of reactive species within mitochondria in vivo. We have used one of these compounds, MitoB, to infer the levels of mitochondrial hydrogen peroxide within flies and mice. Here we describe the development of MitoB and expand on this example to discuss how better probes and exomarkers can be developed. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. Abbreviations: EPR, electron paramagnetic resonance; GFP, green fluorescent protein; 4-HNE, 4-hydroxynonenal; MitoB, 3-(dihydroxyboronyl)benzyltriphenylphosphonium bromide; MitoP, (3-hydroxybenzyl)triphenylphosphonium bromide; ROS, reactive oxygen species; SOD, superoxide dismutase; TPMP, methyltriphenylphosphonium; TPP, triphenylphosphonium catio

    Allogeneic Hematopoietic Cell Transplantation Improves Outcome in Myelodysplastic Syndrome Across High-Risk Genetic Subgroups:Genetic Analysis of the Blood and Marrow Transplant Clinical Trials Network 1102 Study

    Get PDF
    PURPOSE:Allogeneic hematopoietic cell transplantation (HCT) in patients with myelodysplastic syndrome (MDS) improves overall survival (OS). We evaluated the impact of MDS genetics on the benefit of HCT in a biological assignment (donor v no donor) study.METHODS:We performed targeted sequencing in 309 patients age 50-75 years with International Prognostic Scoring System (IPSS) intermediate-2 or high-risk MDS, enrolled in the Blood and Marrow Transplant Clinical Trials Network 1102 study and assessed the association of gene mutations with OS. Patients with TP53 mutations were classified as TP53multihit if two alleles were altered (via point mutation, deletion, or copy-neutral loss of heterozygosity).RESULTS:The distribution of gene mutations was similar in the donor and no donor arms, with TP53 (28% v 29%; P =.89), ASXL1 (23% v 29%; P =.37), and SRSF2 (16% v 16%; P =.99) being most common. OS in patients with a TP53 mutation was worse compared with patients without TP53 mutation (21% ± 5% [SE] v 52% ± 4% at 3 years; P &lt;.001). Among those with a TP53 mutation, OS was similar between TP53single versus TP53multihit (22% ± 8% v 20% ± 6% at 3 years; P =.31). Considering HCT as a time-dependent covariate, patients with a TP53 mutation who underwent HCT had improved OS compared with non-HCT treatment (OS at 3 years: 23% ± 7% v 11% ± 7%; P =.04), associated with a hazard ratio of 3.89; 95% CI, 1.87 to 8.12; P &lt;.001 after adjustment for covariates. OS among patients with molecular IPSS (IPSS-M) very high risk without a TP53 mutation was significantly improved if they had a donor (68% ± 10% v 0% ± 12% at 3 years; P =.001).CONCLUSION:HCT improved OS compared with non-HCT treatment in patients with TP53 mutations irrespective of TP53 allelic status. Patients with IPSS-M very high risk without a TP53 mutation had favorable outcomes when a donor was available.</p
    • …
    corecore