62 research outputs found

    Association between maternal occupational exposure to cleaning chemicals during pregnancy and childhood wheeze and asthma

    Get PDF
    BackgroundAsthma is a leading cause of childhood morbidity in the U.S. and a significant public health concern. The prenatal period is a critical window during which environmental influences, including maternal occupational exposures, can shape child respiratory health. Cleaning chemicals are commonly encountered in occupational settings, yet few studies have examined the potential link between prenatal occupational exposures to cleaning chemicals and risk of childhood wheeze and asthma.MethodsWe evaluated the potential influence of maternal occupational exposure to cleaning chemicals during pregnancy on pediatric asthma and wheeze at child age 4–6 years in 453 mother-child pairs from two longitudinal pregnancy cohorts, TIDES and GAPPS, part of the ECHO prenatal and early childhood pathways to health (ECHO-PATHWAYS) consortium. Maternal occupational exposure to cleaning chemicals was defined based on reported occupation and frequency of occupational use of chemicals during pregnancy. Child current wheeze and asthma outcomes were defined by parental responses to a widely-used, standardized respiratory outcomes questionnaire administered at child age 4–6 years. Multivariable Poisson regression with robust standard errors was used to estimate relative risk (RR) of asthma in models adjusted for confounding. Effect modification by child sex was assessed using product interaction terms.ResultsOverall, 116 mothers (25.6%) reported occupational exposure to cleaning chemicals during pregnancy, 11.7% of children had current wheeze, and 10.2% had current asthma. We did not identify associations between prenatal exposure to cleaning chemicals and current wheeze [RRadjusted 1.03, 95% confidence interval (CI): 0.56, 1.90] or current asthma (RRadjusted 0.89, CI: 0.46, 1.74) in the overall sample. Analyses of effect modification suggested an adverse association among females for current wheeze (RR 1.82, CI: 0.76, 4.37), compared to males (RR 0.68, CI: 0.29, 1.58), though the interaction p-value was >0.05.ConclusionWe did not observe evidence of associations between maternal prenatal occupational exposure to cleaning chemicals and childhood wheeze or asthma in the multi-site ECHO-PATHWAYS consortium. We leveraged longitudinal U.S. pregnancy cohorts with rich data characterization to expand on limited and mixed literature. Ongoing research is needed to more precisely characterize maternal occupational chemical exposures and impacts on child health in larger studies

    Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis

    Get PDF
    The central nervous system (CNS) is capable of gathering information on the body’s nutritional state and it implements appropriate behavioral and metabolic responses to changes in fuel availability. This feedback signaling of peripheral tissues ensures the maintenance of energy homeostasis. The hypothalamus is a primary site of convergence and integration for these nutrient-related feedback signals, which include central and peripheral neuronal inputs as well as hormonal signals. Increasing evidence indicates that glucose and lipids are detected by specialized fuel-sensing neurons that are integrated in these hypothalamic neuronal circuits. The purpose of this review is to outline the current understanding of fuel-sensing mechanisms in the hypothalamus, to integrate the recent findings in this field, and to address the potential role of dysregulation in these pathways in the development of obesity and type 2 diabetes mellitus

    Impact of respiratory infections, outdoor pollen, and socioeconomic status on associations between air pollutants and pediatric asthma hospital admissions.

    No full text
    Epidemiology studies have shown that ambient concentrations of ozone and fine particulate matter (PM2.5) are associated with increased emergency department (ED) visits and hospital admissions (HAs) for asthma.Evaluate the impact of outdoor pollen, respiratory infections, and socioeconomic status (SES) on the associations between ambient ozone and PM2.5 and asthma HAs in New York City.Daily ozone, PM2.5, meteorological factors, pollen, and hospitalization records during 1999 to 2009 were obtained for New York City residents. Daily counts of HAs for asthma and respiratory infections were calculated for all-age and specific age groups, and for high- and low-SES communities. Generalized additive models were used to examine ambient concentrations of ozone and PM2.5 and asthma HAs, potential confounding effects of outdoor pollen and HAs for respiratory infections, and potential effect modification by neighborhood SES.Both ozone and PM2.5 were statistically significantly associated with increased asthma HAs in children aged 6-18 years (per 10 ppb increase in ozone: RR = 1.0203, 95% CI: 1.0028-1.0382; per 10 μg/m3 increase in PM2.5: RR = 1.0218, 95% CI: 1.0007-1.0434), but not with total asthma HAs, or asthma HAs in other age groups. These associations were stronger for children living in the high-SES areas. Adjustment for respiratory infection HAs at various lags did not result in changes greater than 10% in the risk estimates for either ozone or PM2.5. In contrast, adjustment for outdoor pollen generally attenuated the estimated RRs for both ozone and PM2.5.Ambient ozone and PM2.5 are associated with asthma HAs in school-age children, and these associations are not modified by SES. HAs for respiratory infections do not appear to be a confounder for observed ozone- and PM2.5-asthma HAs associations, but pollen may be a weak confounder

    Providing perspective for interpreting cardiovascular mortality risks associated with ozone exposures

    Get PDF
    AbstractWhen identifying standards for air pollutants based on uncertain evidence, both science and policy judgments play critical roles. Consequently, critical contextual factors are important for understanding the strengths, limitations, and appropriate interpretation of available science, and potential benefits of risk mitigation alternatives. These factors include the relative magnitude and certainty of the risks posed by various factors and the impacts of other risk factors on air pollutant epidemiology study findings. This commentary explores ozone’s status as a risk factor for cardiovascular mortality in contrast with decades of strong and consistent evidence for other established risk factors. By comparison, the ozone evidence is less conclusive, more heterogeneous, and subject to substantial uncertainty; ozone’s potential effects, if any, are small and challenging to discern. Moreover, the absence of a demonstrated causal relationship calls into question efforts to quantify cardiovascular mortality risks attributed to ozone exposures on a population level and highlights the need to explicitly acknowledge this uncertainty if such calculations are performed. These concerns are relevant for other similar policy contexts – where multiple established risk factors contribute to the health impact of interest; exposure-effect associations are relatively small, weak, and uncertain; and a causal relationship has not been clearly established
    corecore