16 research outputs found

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    A review of complementary and alternative treatments for autism spectrum disorders. Autism Res Treat

    No full text
    Given the severe and chronic problems associated with Autism Spectrum Disorders (ASD) and the limitations of available treatments, there exists a large public health need for additional interventions. As more parents are inquiring about complementary and alternative treatments (CATs), both parents and practitioners require up-to-date information about them and whether and how to integrate them into treatment. After presenting data on CAT usage patterns for ASD, we review 13 ingestible (i.e., orally administered) and 6 noningestible (i.e., externally administered) CATs for ASD. For each CAT we briefly describe its definition; rationale for use; current research support, limitations, and future directions; safety issues; and whether we currently recommend, not recommend, or find it acceptable for the treatment of ASD. We conclude this paper with recommendations for future research and ten clinical recommendations for practitioners

    A Review of Complementary and Alternative Treatments for Autism Spectrum Disorders

    Get PDF
    Given the severe and chronic problems associated with Autism Spectrum Disorders (ASD) and the limitations of available treatments, there exists a large public health need for additional interventions. As more parents are inquiring about complementary and alternative treatments (CATs), both parents and practitioners require up-to-date information about them and whether and how to integrate them into treatment. After presenting data on CAT usage patterns for ASD, we review 13 ingestible (i.e., orally administered) and 6 noningestible (i.e., externally administered) CATs for ASD. For each CAT we briefly describe its definition; rationale for use; current research support, limitations, and future directions; safety issues; and whether we currently recommend, not recommend, or find it acceptable for the treatment of ASD. We conclude this paper with recommendations for future research and ten clinical recommendations for practitioners

    Double-Blind Placebo-Controlled Randomized Clinical Trial of Neurofeedback for Attention-Deficit/Hyperactivity Disorder With 13-Month Follow-up

    No full text
    Objective: To determine whether theta/beta-ratio (TBR) electroencephalographic biofeedback (neurofeedback [NF]) has a specific effect on attention-deficit/hyperactivity disorder (ADHD) beyond nonspecific benefit. Method: In a 2-site double-blind randomized clinical trial, 144 children aged 7 to 10 years with rigorously diagnosed moderate/severe ADHD and theta/beta-ratio (TBR) ≥4.5 were randomized 3:2 to deliberate TBR downtraining versus a control of equal duration, intensity, and appearance. Two early dropouts left 142 children for modified intent-to-treat analysis. The control used prerecorded electroencephalograms with the participant's artifacts superimposed. Treatment was programmed via Internet by an off-site statistician-guided co-investigator. Fidelity was 98.7% by trainers/therapists and 93.2% by NF expert monitor. The primary outcome was parent- and teacher-rated inattention; analysis was mixed-effects regression. Because the expense and effort of NF can be justified only by enduring benefit, follow-ups were integrated. Results: Blinding was excellent. Although both groups showed significant improvement (p <.001, d = 1.5) in parent/teacher-rated inattention from baseline to treatment end and 13-month follow-up, NF was not significantly superior to the control condition at either time point on this primary outcome (d = 0.01, p =.965 at treatment end; d = 0.23, p =.412 at 13-month follow-up). Responders (Clinical Global Impression−Improvement [CGI-I] = 1−2) were 61% of NF and 54% of controls (p =.36). Adverse events were distributed proportionally between treatments. The 13-month follow-up found nonsignificant improvement from treatment end for NF (d = 0.1), with mild deterioration for controls (d = −0.07). NF required significantly less medication at follow-up (p =.012). Conclusion: This study does not support a specific effect of deliberate TBR NF at either treatment end or 13-month follow-up. Participants will be reassessed at 25-month follow-up. Clinical trial registration information: Double-Blind 2-Site Randomized Clinical Trial of Neurofeedback for ADHD; https://clinicaltrials.gov/; NCT02251743
    corecore