17 research outputs found

    Biological Insights From Plasma Proteomics of Non-small Cell Lung Cancer Patients Treated With Immunotherapy

    Get PDF
    INTRODUCTION: Immune checkpoint inhibitors have made a paradigm shift in the treatment of non-small cell lung cancer (NSCLC). However, clinical response varies widely and robust predictive biomarkers for patient stratification are lacking. Here, we characterize early on-treatment proteomic changes in blood plasma to gain a better understanding of treatment response and resistance. METHODS: Pre-treatment (T0) and on-treatment (T1) plasma samples were collected from 225 NSCLC patients receiving PD-1/PD-L1 inhibitor-based regimens. Plasma was profiled using aptamer-based technology to quantify approximately 7000 plasma proteins per sample. Proteins displaying significant fold changes (T1:T0) were analyzed further to identify associations with clinical outcomes using clinical benefit and overall survival as endpoints. Bioinformatic analyses of upregulated proteins were performed to determine potential cell origins and enriched biological processes. RESULTS: The levels of 142 proteins were significantly increased in the plasma of NSCLC patients following ICI-based treatments. Soluble PD-1 exhibited the highest increase, with a positive correlation to tumor PD-L1 status, and, in the ICI monotherapy dataset, an association with improved overall survival. Bioinformatic analysis of the ICI monotherapy dataset revealed a set of 30 upregulated proteins that formed a single, highly interconnected network, including CD8A connected to ten other proteins, suggestive of T cell activation during ICI treatment. Notably, the T cell-related network was detected regardless of clinical benefit. Lastly, circulating proteins of alveolar origin were identified as potential biomarkers of limited clinical benefit, possibly due to a link with cellular stress and lung damage. CONCLUSIONS: Our study provides insights into the biological processes activated during ICI-based therapy, highlighting the potential of plasma proteomics to identify mechanisms of therapy resistance and biomarkers for outcome

    The evolutionary dynamics that retain long neutral genomic sequences in face of indel deletion bias: a model and its application to human introns

    No full text
    Insertions and deletions (indels) of short DNA segments are common evolutionary events. Numerous studies showed that deletions occur more often than insertions in both prokaryotes and eukaryotes. It raises the question why neutral sequences are not eradicated from the genome. We suggest that this is due to a phenomenon we term border-induced selection. Accordingly, a neutral sequence is bordered between conserved regions. Deletions occurring near the borders occasionally protrude to the conserved region and are thereby subject to strong purifying selection. Thus, for short neutral sequences, an insertion bias is expected. Here, we develop a set of increasingly complex models of indel dynamics that incorporate border-induced selection. Furthermore, we show that short conserved sequences within the neutrally evolving sequence help explain: (i) the presence of very long sequences; (ii) the high variance of sequence lengths; and (iii) the possible emergence of multimodality in sequence length distributions. Finally, we fitted our models to the human intron length distribution, as introns are thought to be mostly neutral and bordered by conserved exons. We show that when accounting for the occurrence of short conserved sequences within introns, we reproduce the main features, including the presence of long introns and the multimodality of intron distribution

    COVID‐19 pandemic‐related lockdown: response time is more important than its strictness

    No full text
    Abstract The rapid spread of SARS‐CoV‐2 and its threat to health systems worldwide have led governments to take acute actions to enforce social distancing. Previous studies used complex epidemiological models to quantify the effect of lockdown policies on infection rates. However, these rely on prior assumptions or on official regulations. Here, we use country‐specific reports of daily mobility from people cellular usage to model social distancing. Our data‐driven model enabled the extraction of lockdown characteristics which were crossed with observed mortality rates to show that: (i) the time at which social distancing was initiated is highly correlated with the number of deaths, r2 = 0.64, while the lockdown strictness or its duration is not as informative; (ii) a delay of 7.49 days in initiating social distancing would double the number of deaths; and (iii) the immediate response has a prolonged effect on COVID‐19 death toll

    Supplementary Figure from The evolutionary dynamics that retain long neutral genomic sequences in face of indel deletion bias: a model and its application to human introns

    No full text
    Insertions and deletions (indels) of short DNA segments are common evolutionary events. Numerous studies showed that deletions occur more often than insertions in both prokaryotes and eukaryotes. It raises the question why neutral sequences are not eradicated from the genome. We suggest that this is due to a phenomenon we term border-induced selection. Accordingly, a neutral sequence is bordered between conserved regions. Deletions occurring near the borders occasionally protrude to the conserved region and are thereby subject to strong purifying selection. Thus, for short neutral sequences, an insertion bias is expected. Here, we develop a set of increasingly complex models of indel dynamics that incorporate border-induced selection. Furthermore, we show that short conserved sequences within the neutrally evolving sequence help explain: (i) the presence of very long sequences; (ii) the high variance of sequence lengths; and (iii) the possible emergence of multimodality in sequence length distributions. Finally, we fitted our models to the human intron length distribution, as introns are thought to be mostly neutral and bordered by conserved exons. We show that when accounting for the occurrence of short conserved sequences within introns, we reproduce the main features, including the presence of long introns and the multi-modality of intron distribution

    An Approximate Bayesian Computation Approach for Modeling Genome Rearrangements

    No full text
    The inference of genome rearrangement events has been extensively studied, as they play a major role in molecular evolution. However, probabilistic evolutionary models that explicitly imitate the evolutionary dynamics of such events, as well as methods to infer model parameters, are yet to be fully utilized. Here, we developed a probabilistic approach to infer genome rearrangement rate parameters using an Approximate Bayesian Computation (ABC) framework. We developed two genome rearrangement models, a basic model, which accounts for genomic changes in gene order, and a more sophisticated one which also accounts for changes in chromosome number. We characterized the ABC inference accuracy using simulations and applied our methodology to both prokaryotic and eukaryotic empirical datasets. Knowledge of genome-rearrangement rates can help elucidate their role in evolution as well as help simulate genomes with evolutionary dynamics that reflect empirical genomes
    corecore