2,976 research outputs found
Airborne 20-65 micron spectrophotometry of Comet Halley
Observations of Comet Halley with a grating spectrometer on board the Kuiper Airborne Observatory on four nights in Dec. 1985 to Apr. 1986 are reported. Low resolution 20 to 65 micrometer spectra of the nucleus with a 40 arcsec FWHM beam was obtained on 17 Dec. 1985, and on 15 and 17 Apr. 1986. On 20 Dec. 1985, only a 20 to 35 micrometer spectrum was obtained. Most of the data have been discussed in a paper where the continuum was dealt with. In that paper, models were fit to the continuum that showed that more micron sized particles of grain similar to amorphous carbon were needed to fit the spectrum than were allowed by the Vega SP-2 mass distribution, or that a fraction of the grains had to be made out of a material whose absorption efficiency fell steeper than lambda sup -1 for lambda greater than 20 micrometers. Spectra was also presented taken at several points on the coma on 15 Apr. which showed that the overall shape to the spectrum is the same in the coma. Tabulated values of the data and calibration curves are available. The spectral features are discussed
Production of oxide fibers by co-reduction Final report
Plastic deformation of metal oxides by high temperature extrusion in molybdenum and tungste
The X-ray Globular Cluster Population in NGC 1399
We report on the {\it Chandra} observations of the elliptical galaxy NGC
1399, concentrating on the X-ray sources identified with globular clusters
(GCs). A large fraction of the 2-10 keV X-ray emission in the
{\it Chandra} image is resolved into point sources with luminosities \ergsec. These sources are most likely Low Mass X-ray Binaries
(LMXBs). In a region imaged by {\it HST} about 70% of the X-ray sources are
located within GCs. This association suggests that in giant elliptical galaxies
luminous X-ray binaries preferentially form in GCs. Many of the GC sources have
super-Eddington luminosities (for an accreting neutron star) and their average
luminosity is higher than the non-GC sources. The X-ray spectral properties of
both GC and non-GC sources are similar to those of LMXBs in our Galaxy. Two of
the brightest sources, one of which is in a GC, have an ultra-soft spectrum,
similar to that seen in the high state of black hole candidates. The
``apparent'' super-Eddington luminosity in many cases may be due to multiple
LMXB systems within individual GCs, but with some of the most extremely
luminous systems containing massive black holes.Comment: accepted in ApJ letter. 10 pages 5 figure
Search For Unresolved Sources In The COBE-DMR Two-Year Sky Maps
We have searched the temperature maps from the COBE Differential Microwave
Radiometers (DMR) first two years of data for evidence of unresolved sources.
The high-latitude sky (|b| > 30\deg) contains no sources brighter than 192 uK
thermodynamic temperature (322 Jy at 53 GHz). The cumulative count of sources
brighter than threshold T, N(> T), is consistent with a superposition of
instrument noise plus a scale-invariant spectrum of cosmic temperature
fluctuations normalized to Qrms-PS = 17 uK. We examine the temperature maps
toward nearby clusters and find no evidence for any Sunyaev-Zel'dovich effect,
\Delta y < 7.3 x 10^{-6} (95% CL) averaged over the DMR beam. We examine the
temperature maps near the brightest expected radio sources and detect no
evidence of significant emission. The lack of bright unresolved sources in the
DMR maps, taken with anisotropy measurements on smaller angular scales, places
a weak constraint on the integral number density of any unresolved
Planck-spectrum sources brighter than flux density S, n(> S) < 2 x 10^4 (S/1
Jy)^{-2} sr^{-1}.Comment: 16 pages including 2 figures, uuencoded PostScript, COBE preprint
94-0
Convection and AGN Feedback in Clusters of Galaxies
A number of studies have shown that the convective stability criterion for
the intracluster medium (ICM) is very different from the Schwarzchild criterion
due to the effects of anisotropic thermal conduction and cosmic rays. Building
on these studies, we develop a model of the ICM in which a central active
galactic nucleus (AGN) accretes hot intracluster plasma at the Bondi rate and
produces cosmic rays that cause the ICM to become convectively unstable. The
resulting convection heats the intracluster plasma and regulates its
temperature and density profiles. By adjusting a single parameter in the model
(the size of the cosmic-ray acceleration region), we are able to achieve a good
match to the observed density and temperature profiles in a sample of eight
clusters. Our results suggest that convection is an important process in
cluster cores. An interesting feature of our solutions is that the cooling rate
is more sharply peaked about the cluster center than is the convective heating
rate. As a result, in several of the clusters in our sample, a compact cooling
flow arises in the central region with a size R that is typically a few kpc.
The cooling flow matches onto a Bondi flow at smaller radii. The mass accretion
rate in the Bondi flow is equal to, and controlled by, the rate at which mass
flows in through the cooling flow. Our solutions suggest that the AGN regulates
the mass accretion rate in these clusters by controlling R: if the AGN power
rises above the equilibrium level, R decreases, the mass accretion rate drops,
and the AGN power drops back down to the equilibrium level.Comment: 41 pages, 7 figures, accepted for publication in ApJ. Changes in this
version: extended discussion of Bondi accretion in clusters, better mass
model, new numerical solution
The energetics and mass structure of regions of star formation: S201
Theoretical predictions about dust and gas in star forming regions are tested by observing a 4 arcmin region surrounding the radio continuum source in 5201. The object was mapped in two far infrared wavelengths and found to show significant extended emission. Under the assumption that the molecular gas is heated solely via thermal coupling with the dust, the volume density was mapped in 5201. The ratios of infrared optical depth to CO column density were calculated for a number of positions in the source. Near the center of the cloud the values are found to be in good agreement with other determinations for regions with lower column density. In addition, the observations suggest significant molecular destruction in the outer parts of the object. Current models of gas heating were used to calculate a strong limit for the radius of the far infrared emitting grains, equal to or less than 0.15 micron. Grains of about this size are required by the observation of high temperature (T equal to or greater than 20 K) gas in many sources
The Misprediction of emotions in Track Athletics.: Is experience the teacher of all things?
People commonly overestimate the intensity of their emotions toward future events. In other words, they display an impact bias. This research addresses the question whether people learn from their experiences and correct for the impact bias. We hypothesize that athletes display an impact bias and, counterintuitively, that increased experience with an event increases this impact bias. A field study in the context of competitive track athletics supported our hypotheses by showing that athletes clearly overestimated their emotions toward the outcome of a track event and that this impact bias was more pronounced for negative events than for positive events. Moreover, with increased athletic experience this impact bias became larger. This effect could not be explained by athletes’ forecasted emotions, but it could be explained by the emotions they actually felt following the race. The more experience athletes had with athletics, the less they felt negative emotions after unsuccessful goal attainment. These findings are discussed in relation to possible underlying emotion regulation processes
NGC 2024: Far-infrared and radio molecular observations
Far infrared continuum and millimeter wave molecular observations are presented for the infrared and radio source NGC 2024. The measurements are obtained at relatively high angular resolution, enabling a description of the source energetics and mass distribution in greater detail than previously reported. The object appears to be dominated by a dense ridge of material, extended in the north/south direction and centered on the dark lane that is seen in visual photographs. Maps of the source using the high density molecules CS and HCN confirm this picture and allow a description of the core structure and molecular abundances. The radio molecular and infrared observations support the idea that an important exciting star in NGC 2024 has yet to be identified and is centered on the dense ridge about 1' south of the bright mid infrared source IRS 2. The data presented here allows a presentation of a model for the source
Prevalence and Properties of Dark Matter in Elliptical Galaxies
Given the recently deduced relationship between X-ray temperatures and
stellar velocity dispersions (the "T-sigma relation") in an optically complete
sample of elliptical galaxies (Davis & White 1996), we demonstrate that L>L_*
ellipticals contain substantial amounts of dark matter in general. We present
constraints on the dark matter scale length and on the dark-to-luminous mass
ratio within the optical half-light radius and within the entire galaxy. For
example, we find that minimum values of dark matter core radii scale as r_dm >
4(L_V/3L_*)^{3/4}h^{-1}_80 kpc and that the minimum dark matter mass fraction
is >~20% within one optical effective radius r_e and is >~39-85% within 6r_e,
depending on the stellar density profile and observed value of beta_spec. We
also confirm the prediction of Davis & White (1996) that the dark matter is
characterized by velocity dispersions that are greater than those of the
luminous stars: sigma_dm^2 ~ 1.4-2 sigma_*^2. The T-sigma relation implies a
nearly constant mass-to-light ratio within six half-light radii: M/L_V ~ 25h_80
M_sun/L_V_sun. This conflicts with the simplest extension of CDM theories of
large scale structure formation to galactic scales; we consider a couple of
modifications which can better account for the observed T-sigma relation.Comment: 27 pages AASTeX; 15 PostScript figures; to appear in Ap
- …