144 research outputs found

    Computational analysis of calcium signaling and membrane electrophysiology in cerebellar Purkinje neurons associated with ataxia

    Get PDF
    BACKGROUND: Mutations in the smooth endoplasmic reticulum (sER) calcium channel Inositol Trisphosphate Receptor type 1 (IP3R1) in humans with the motor function coordination disorders Spinocerebellar Ataxia Types 15 and 16 (SCA15/16) and in a corresponding mouse model, the IP3R1(delta18/delta18) mice, lead to reduced IP3R1 levels. We posit that increasing IP3R1 sensitivity to IP3 in ataxias with reduced IP3R1 could restore normal calcium response. On the other hand, in mouse models of the human polyglutamine (polyQ) ataxias, SCA2, and SCA3, the primary finding appears to be hyperactive IP3R1-mediated calcium release. It has been suggested that the polyQ SCA1 mice may also show hyperactive IP3R1. Yet, SCA1 mice show downregulated gene expression of IP3R1, Homer, metabotropic glutamate receptor (mGluR), smooth endoplasmic reticulum Ca-ATP-ase (SERCA), calbindin, parvalbumin, and other calcium signaling proteins. RESULTS: We create a computational model of pathological alterations in calcium signaling in cerebellar Purkinje neurons to investigate several forms of spinocerebellar ataxia associated with changes in the abundance, sensitivity, or activity of the calcium channel IP3R1. We find that increasing IP3R1 sensitivity to IP3 in computational models of SCA15/16 can restore normal calcium response if IP3R1 abundance is not too low. The studied range in IP3R1 levels reflects variability found in human and mouse ataxic models. Further, the required fold increases in sensitivity are within experimental ranges from experiments that use IP3R1 phosphorylation status to adjust its sensitivity to IP3. Results from our simulations of polyglutamine SCAs suggest that downregulation of some calcium signaling proteins may be partially compensatory. However, the downregulation of calcium buffer proteins observed in the SCA1 mice may contribute to pathology. Finally, our model suggests that the calcium-activated voltage-gated potassium channels may provide an important link between calcium metabolism and membrane potential in Purkinje cell function. CONCLUSION: Thus, we have established an initial platform for computational evaluation and prediction of ataxia pathophysiology. Specifically, the model has been used to investigate SCA15/16, SCA1, SCA2, and SCA3. Results suggest that experimental studies treating mouse models of any of these ataxias with appropriately chosen peptides resembling the C-terminal of IP3R1 could adjust receptor sensitivity, and thereby modulate calcium release and normalize IP3 response. In addition, the model supports the hypothesis of IP3R1 supersensitivity in SCA1

    New Voltage Sensitive Dyes

    Get PDF

    Molecular machines or pleiomorphic ensembles: signaling complexes revisited

    Get PDF
    Signaling complexes typically consist of highly dynamic molecular ensembles that are challenging to study and to describe accurately. Conventional mechanical descriptions misrepresent this reality and can be actively counterproductive by misdirecting us away from investigating critical issues

    Experiences in deploying metadata analysis tools for institutional repositories

    Get PDF
    Current institutional repository software provides few tools to help metadata librarians understand and analyze their collections. In this article, we compare and contrast metadata analysis tools that were developed simultaneously, but independently, at two New Zealand institutions during a period of national investment in research repositories: the Metadata Analysis Tool (MAT) at The University of Waikato, and the Kiwi Research Information Service (KRIS) at the National Library of New Zealand. The tools have many similarities: they are convenient, online, on-demand services that harvest metadata using OAI-PMH; they were developed in response to feedback from repository administrators; and they both help pinpoint specific metadata errors as well as generating summary statistics. They also have significant differences: one is a dedicated tool wheres the other is part of a wider access tool; one gives a holistic view of the metadata whereas the other looks for specific problems; one seeks patterns in the data values whereas the other checks that those values conform to metadata standards. Both tools work in a complementary manner to existing Web-based administration tools. We have observed that discovery and correction of metadata errors can be quickly achieved by switching Web browser views from the analysis tool to the repository interface, and back. We summarize the findings from both tools' deployment into a checklist of requirements for metadata analysis tools

    Modeling capping protein FRAP and CALI experiments reveals in vivo regulation of actin dynamics

    Get PDF
    To gain insights on cellular mechanisms regulating actin polymerization, we used the Virtual Cell to model FRAP and chromophore assisted laser inactivation (CALI) experiments on EGFP-capping protein (EGFP-CP). Modeling the FRAP kinetics demonstrated that the in vivo rate for the dissociation of CP from actin filaments is much faster (~0.1 s−1) than that measured in vitro (0.01–0.0004 s−1). The CALI simulation revealed that in order to induce sustainable changes in cell morphology after CP inactivation, the cells should exhibit anti-capping ability. We included the VASP protein as the anti-capping agent in the modeling scheme. The model predicts that VASP affinity for barbed ends has a cooperative dependence on the concentration of VASP-barbed end complexes. This dependence produces a positive feedback that stabilizes the complexes and allows sustained growth at clustered filament tips. We analyzed the range of laser intensities that are sufficient to induce changes in cell morphology. This analysis demonstrates that FRAP experiments with EGFP-CP can be performed safely without changes in cell morphology, because, the intensity of the photobleaching beam is not high enough to produce the critical concentration of free barbed ends that will induce filament growth before diffusional replacement of EGFP-CP occurs

    Integration of linear and dendritic actin nucleation in Nck-induced actin comets

    Get PDF
    The Nck adaptor protein recruits cytosolic effectors such as N-WASP that induce localized actin polymerization. Experimental aggregation of Nck SH3 domains at the membrane induces actin comet tails-dynamic, elongated filamentous actin structures similar to those that drive the movement of microbial pathogens such as vaccinia virus. Here we show that experimental manipulation of the balance between unbranched/branched nucleation altered the morphology and dynamics of Nck-induced actin comets. Inhibition of linear, form-in-based nucleation with the small-molecule inhibitor SMIFH2 or overexpression of the formin FH1 domain resulted in formation of predominantly circular-shaped actin structures with low mobility (actin blobs). These results indicate that formin-based linear actin polymerization is critical for the formation and maintenance of Nck-dependent actin comet tails. Consistent with this, aggregation of an exclusively branched nucleation-promoting factor (the VCA domain of N-WASP), with density and turnover similar to those of N-WASP in Nck comets, did not reconstitute dynamic, elongated actin comets. Furthermore, enhancement of branched Arp2/3-mediated nucleation by N-WASP overexpression caused loss of the typical actin comet tail shape induced by Nck aggregation. Thus the ratio of linear to dendritic nucleation activity may serve to distinguish the properties of actin structures induced by various viral and bacterial pathogens.Fil: Surtayeva, Sofya. University of Connecticut School of Medicine; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Velle, Katrina B.. University of Connecticut; Estados UnidosFil: Campellone, Kenneth G.. University of Connecticut; Estados UnidosFil: Talman, Arthur. Yale School of Medicine; Estados UnidosFil: Alvarez, Diego Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Agaisse, Hervé. Yale School of Medicine; Estados UnidosFil: Wu, Yi I.. University of Connecticut School of Medicine; Estados UnidosFil: Loew, Leslie M.. University of Connecticut School of Medicine; Estados UnidosFil: Mayer, Bruce J.. University of Connecticut School of Medicine; Estados Unido
    corecore