50 research outputs found

    Pharmacological evidence for the stimulation of NADPH oxidase by P2X7 receptors in mouse submandibular glands

    Get PDF
    ATP in the 100 μM-1 mM concentration range provoked a calcium-independent increase of the oxidation of dichlorodihydrofluorescein (DCFH) to dichlorofluorescein (DCF) by mouse submandibular cells. 3′-O-(4-benzoyl)benzoyl adenosine 5′-triphosphate (BzATP), a P2X7 agonist, but not a muscarinic or an adrenergic agonist, reproduced the effect of ATP. The inhibition of phospholipase C by U73122 or the potentiation of P2X4 receptor activation with ivermectin did not modify the response to ATP. ATP did not increase the oxidation of DCFH in cells isolated from submandibular glands of P2X7 knockout mice or in cells pretreated with a P2X7 antagonist. The inhibition of protein kinase C or of mitogen-activated protein kinase (MAP kinase) or of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase blocked the oxidation of DCFH without affecting the increase of the intracellular concentration of calcium or the uptake of ethidium bromide in response to extracellular ATP. From these results it is concluded that the activation of the P2X7 receptors from submandibular glands triggers an intracellular signalling cascade involving protein kinase C and MAP kinase leading to the stimulation of NADPH oxidase and the subsequent generation of reactive oxygen species

    Uptake Rate of Cationic Mitochondrial Inhibitor MKT-077 Determines Cellular Oxygen Consumption Change in Carcinoma Cells

    Get PDF
    <div><h3>Objective</h3><p>Since tumor radiation response is oxygen-dependent, radiosensitivity can be enhanced by increasing tumor oxygenation. Theoretically, inhibiting cellular oxygen consumption is the most efficient way to increase oxygen levels. The cationic, rhodacyanine dye-analog MKT-077 inhibits mitochondrial respiration and could be an effective metabolic inhibitor. However, the relationship between cellular MKT-077 uptake and metabolic inhibition is unknown. We hypothesized that rat and human mammary carcinoma cells would take up MKT-077, causing a decrease in oxygen metabolism related to drug uptake.</p> <h3>Methods</h3><p>R3230Ac rat breast adenocarcinoma cells were exposed to MKT-077. Cellular MKT-077 concentration was quantified using spectroscopy, and oxygen consumption was measured using polarographic electrodes. MKT-077 uptake kinetics were modeled by accounting for uptake due to both the concentration and potential gradients across the plasma and mitochondrial membranes. These kinetic parameters were used to model the relationship between MKT-077 uptake and metabolic inhibition. MKT-077-induced changes in oxygen consumption were also characterized in MDA-MB231 human breast carcinoma cells.</p> <h3>Results</h3><p>Cells took up MKT-077 with a time constant of ∼1 hr, and modeling showed that over 90% of intracellular MKT-077 was bound or sequestered, likely by the mitochondria. The uptake resulted in a rapid decrease in oxygen consumption, with a time constant of ∼30 minutes. Surprisingly the change in oxygen consumption was proportional to uptake rate, not cellular concentration. MKT-077 proved a potent metabolic inhibitor, with dose-dependent decreases of 45–73% (p = 0.003).</p> <h3>Conclusions</h3><p>MKT-077 caused an uptake rate-dependent decrease in cellular metabolism, suggesting potential efficacy for increasing tumor oxygen levels and radiosensitivity <em>in vivo</em>.</p> </div

    Kinetic Analysis of Rhodamines Efflux Mediated by the Multidrug Resistance Protein (MRP1)

    Get PDF
    Characterization of rhodamine 123 as functional assay for MDR has been primarily focused on P-glycoprotein-mediated MDR. Several studies have suggested that Rh123 is also a substrate for MRP1. However, no quantitative studies of the MRP1-mediated efflux of rhodamines have, up to now, been performed. Measurement of the kinetic characteristics of substrate transport is a powerful approach to enhancing our understanding of their function and mechanism. In the present study, we have used a continuous fluorescence assay with four rhodamine dyes (rhodamine 6G, tetramethylrosamine, tetramethylrhodamine ethyl ester, and tetramethylrhodamine methyl ester) to quantify drug transport by MRP1 in living GLC4/ADR cells. The formation of a substrate concentration gradient was observed. MRP1-mediated transport of rhodamine was glutathione-dependent. The kinetics parameter, k(a) = V(M)/k(m), was very similar for the four rhodamine analogs but ∼10-fold less than the values of the same parameter determined previously for the MRP1-mediated efflux of anthracycline. The findings presented here are the first to show quantitative information about the kinetics parameters for MRP1-mediated efflux of rhodamine dyes
    corecore