67 research outputs found

    SACCON Forced Oscillation Tests at DNW-NWB and NASA Langley 14x22-Foot Tunnel

    Get PDF
    A series of three wind tunnel static and forced oscillation tests were conducted on a generic unmanned combat air vehicle (UCAV) geometry. These tests are part of an international research effort to assess the state-of-the-art of computational fluid dynamics (CFD) methods to predict the static and dynamic stability and control characteristics. The experimental dataset includes not only force and moment time histories but surface pressure and off body particle image velocimetry measurements as well. The extent of the data precludes a full examination within the scope of this paper. This paper provides some examples of the dynamic force and moment data available as well as some of the observed trends

    Plant community responses to livestock grazing: an assessment of alternative management practices in a semi-arid grassland

    Get PDF
    One of the most prevalent land-use practices in the American Southwest, and one of the most contentious issues among land-use policymakers, is the grazing of domestic livestock. In an effort to contribute scientific understanding to this debate, we have designed experiments comparing the effects of alternative grazing regimes on plant communities. In a semiarid grassland of northern Arizona, we have implemented a replicated study of four treatments: (1) low-intensity, long-duration grazing rotations; (2) highintensity, short-duration rotations (Holistic Resource Management-style grazing); (3) very high intensity, short duration grazing (to simulate herd impact); and (4) livestock exclosure. Beginning in 1997, we conducted annual surveys of the plant communities with Modified-Whittaker plots. Preliminary results suggest that interannual variability affecting all study plots is high, and that these alternative management strategies do not have dramatic short-term effects on the plant community. Comparisons of native and exotic species richness, as well as ground cover of grasses and forbs, showed no consistent pattern due to treatment over a 3-year period. Our results suggest that the effects of alternative livestock management styles in the semiarid grasslands studied are modest, at least in the short-term, and that future plant monitoring programs would greatly benefit from a multiscale sampling design

    Reframing the grazing debate: Evaluating ecological sustainability and bioregional food production

    Get PDF
    The semi-arid grasslands of the Colorado Plateau are productive, diverse, and extensive ecosystems. The majority of these ecosystems have been altered by human land use, primarily through the grazing of domestic livestock, yielding a plethora of environmental and social consequences that are tightly interconnected. From an agroecological perspective, untangling these issues requires both an understanding of the role of livestock grazing in bioregional food production and the effect of that grazing on ecological sustainability. To address the former, we discuss the importance of cattle ranching as a bioregional food source, including estimates of meat production and water use in Arizona. To address the latter, we present data from a long-term project addressing changes in native plant community composition, under a range of alternative livestock management strategies. Our study site near Flagstaff, AZ includes four different management treatments: (1) conventional low-intensity, long-duration grazing rotations; (2) high-intensity, short-duration rotations; (3) very high-impact, very short-duration grazing (to simulate herd impact); and, (4) livestock exclosure. Preliminary results suggest belowground properties are responding more quickly to grazing treatments than aboveground properties. Particular response variables, such as cyanobacteria and diatoms, show a marked short-term response to very high-impact, short-duration grazing, but long-term implications are as yet unknown

    Dual Order Parameter for the Nodal Liquid

    Full text link
    The guiding conception of vortex-condensation-driven Mott insulating behavior is central to the theory of the nodal liquid. We amplify our earlier description of this idea and show how vortex condensation in 2D electronic systems is a natural extension of 1D Mott insulating and 2D bosonic Mott insulating behavior. For vortices in an underlying superconducting pair field, there is an important distinction between the condensation of flux hc/2e and flux hc/e vortices. The former case leads to spin-charge confinement, exemplified by the band insulator and the charge-density-wave. In the latter case, spin and charge are liberated leading directly to a 2D Mott insulator exhibiting *spin-charge separation*. Possible upshots include not only the nodal liquid, but also a novel undoped antiferromagnetic insulating phase with gapped excitations exhibiting spin-charge separation.Comment: 16 pages, 2 figure

    Aberrant Mitochondrial Homeostasis in the Skeletal Muscle of Sedentary Older Adults

    Get PDF
    The role of mitochondrial dysfunction and oxidative stress has been extensively characterized in the aetiology of sarcopenia (aging-associated loss of muscle mass) and muscle wasting as a result of muscle disuse. What remains less clear is whether the decline in skeletal muscle mitochondrial oxidative capacity is purely a function of the aging process or if the sedentary lifestyle of older adult subjects has confounded previous reports. The objective of the present study was to investigate if a recreationally active lifestyle in older adults can conserve skeletal muscle strength and functionality, chronic systemic inflammation, mitochondrial biogenesis and oxidative capacity, and cellular antioxidant capacity. To that end, muscle biopsies were taken from the vastus lateralis of young and age-matched recreationally active older and sedentary older men and women (N = 10/group; ♀  =  ♂). We show that a physically active lifestyle is associated with the partial compensatory preservation of mitochondrial biogenesis, and cellular oxidative and antioxidant capacity in skeletal muscle of older adults. Conversely a sedentary lifestyle, associated with osteoarthritis-mediated physical inactivity, is associated with reduced mitochondrial function, dysregulation of cellular redox status and chronic systemic inflammation that renders the skeletal muscle intracellular environment prone to reactive oxygen species-mediated toxicity. We propose that an active lifestyle is an important determinant of quality of life and molecular progression of aging in skeletal muscle of the elderly, and is a viable therapy for attenuating and/or reversing skeletal muscle strength declines and mitochondrial abnormalities associated with aging

    Strength Training for Arthritis Trial (START): design and rationale

    Get PDF
    Background Muscle loss and fat gain contribute to the disability, pain, and morbidity associated with knee osteoarthritis (OA), and thigh muscle weakness is an independent and modifiable risk factor for it. However, while all published treatment guidelines recommend muscle strengthening exercise to combat loss of muscle mass and strength in knee OA patients, previous strength training studies either used intensities or loads below recommended levels for healthy adults or were generally short, lasting only 6 to 24 weeks. The efficacy of high-intensity strength training in improving OA symptoms, slowing progression, and affecting the underlying mechanisms has not been examined due to the unsubstantiated belief that it might exacerbate symptoms. We hypothesize that in addition to short-term clinical benefits, combining greater duration with high-intensity strength training will alter thigh composition sufficiently to attain long-term reductions in knee-joint forces, lower pain levels, decrease inflammatory cytokines, and slow OA progression. Methods/Design This is an assessor-blind, randomized controlled trial. The study population consists of 372 older (age ≥ 55 yrs) ambulatory, community-dwelling persons with: (1) mild-to-moderate medial tibiofemoral OA (Kellgren-Lawrence (KL) = 2 or 3); (2) knee neutral or varus aligned knee ( -2° valgus ≤ angle ≤ 10° varus); (3) 20 kg.m-2 ≥ BMI ≤ 45 kg.m-2; and (3) no participation in a formal strength-training program for more than 30 minutes per week within the past 6 months. Participants are randomized to one of 3 groups: high-intensity strength training (75-90% 1Repetition Maximum (1RM)); low-intensity strength training (30-40%1RM); or healthy living education. The primary clinical aim is to compare the interventions’ effects on knee pain, and the primary mechanistic aim is to compare their effects on knee-joint compressive forces during walking, a mechanism that affects the OA disease pathway. Secondary aims will compare the interventions’ effects on additional clinical measures of disease severity (e.g., function, mobility); disease progression measured by x-ray; thigh muscle and fat volume, measured by computed tomography (CT); components of thigh muscle function, including hip abductor strength and quadriceps strength, and power; additional measures of knee-joint loading; inflammatory and OA biomarkers; and health-related quality of life. Discussion Test-retest reliability for the thigh CT scan was: total thigh volume, intra-class correlation coefficients (ICC) = 0.99; total fat volume, ICC = 0.99, and total muscle volume, ICC = 0.99. ICC for both isokinetic concentric knee flexion and extension strength was 0.93, and for hip-abductor concentric strength was 0.99. The reliability of our 1RM testing was: leg press, ICC = 0.95; leg curl, ICC = 0.99; and leg extension, ICC = 0.98. Results of this trial will provide critically needed guidance for clinicians in a variety of health professions who prescribe and oversee treatment and prevention of OA-related complications. Given the prevalence and impact of OA and the widespread availability of this intervention, assessing the efficacy of optimal strength training has the potential for immediate and vital clinical impact

    Understanding the nature and mechanism of foot pain

    Get PDF
    Approximately one-quarter of the population are affected by foot pain at any given time. It is often disabling and can impair mood, behaviour, self-care ability and overall quality of life. Currently, the nature and mechanism underlying many types of foot pain is not clearly understood. Here we comprehensively review the literature on foot pain, with specific reference to its definition, prevalence, aetiology and predictors, classification, measurement and impact. We also discuss the complexities of foot pain as a sensory, emotional and psychosocial experience in the context of clinical practice, therapeutic trials and the placebo effect. A deeper understanding of foot pain is needed to identify causal pathways, classify diagnoses, quantify severity, evaluate long term implications and better target clinical intervention

    Basement membrane components are key players in specialized extracellular matrices

    Get PDF
    More than three decades ago, basement membranes (BMs) were described as membrane-like structures capable of isolating a cell from and connecting a cell to its environment. Since this time, it has been revealed that BMs are specialized extracellular matrices (sECMs) with unique components that support important functions including differentiation, proliferation, migration, and chemotaxis of cells during development. The composition of these sECM is as unique as the tissues to which they are localized, opening the possibility that such matrices can fulfill distinct functions. Changes in BM composition play significant roles in facilitating the development of various diseases. Furthermore, tissues have to provide sECM for their stem cells during development and for their adult life. Here, we briefly review the latest research on these unique sECM and their components with a special emphasis on embryonic and adult stem cells and their niches

    Static and Forced-Oscillation Tests of a Generic Unmanned Combat Air Vehicle

    No full text
    A series of three wind-tunnel static and forced-oscillation tests were conducted on a model of a generic unmanned combat air vehicle. These tests are part of an international research effort to assess the state of the art of computational fluid dynamics methods to predict the static and dynamic stability and control characteristics. The experimental data set includes not only force and moment time histories, but also surface pressure and offbody particle image velocimetry measurements. The extent of the data precludes a full examination within the scope of this paper. This paper provides a general description and selected examples of the available static and dynamic data, as well as some of the observed trends
    corecore