18 research outputs found

    Ultra-fast laser-based surface engineering of conductive thin films

    Full text link
    Modern electronics facilitate the need for fast, efficient, and reliable methods for direct laser-based surface engineering of conductive thin film materials on flexible substrates. Recent advances in pulsed laser source development only incrementally increased the processing speeds, as those are limited by the available scanning systems. Our goal was to combine a high pulse repetition frequency high-power pulse-on-demand fiber laser source with an ultra-fast resonant scanner to achieve high throughput surface engineering. The enabling factor to compensate a resonant scanner`s sinusoidal movement were the laser`s intrinsic pulse-on-demand capabilities beyond simple pulse picking solutions. The high temporal resolution at full laser power was exploited for spatially controlled surface texturing, allowing a minimally 3 %m positioning accuracy throughout the scanner`s range at up to 60 m/s scan speed with a 10 %m laser spot size. We applied the setup to processing of ITO and metallic films on flexible substrates for touchscreens, position sensors, or EM shielding. Surface modification and patterning of the conductive layer was successfully demonstrated while keeping the underlying surface intact. We employed a simple laser ablation model in comparison to the experimental data to improve the understanding of the ablation process. The resulting surface topography was observed and analysed

    Backward Flux Re-Deposition Patterns during Multi-Spot Laser Ablation of Stainless Steel with Picosecond and Femtosecond Pulses in Air

    No full text
    We report on novel observations of directed re-deposition of ablation debris during the ultrafast laser micro-structuring of stainless steel in the air with multi-beams in close proximity on the surface. This interesting phenomenon is observed with both 10 ps and 600 fs NIR laser pulses at 5 kHz repetition rate. Ablation spot geometries could be altered with the use of beam splitting optics or a phase-only Spatial Light modulator. At low fluence (F ~ 1.0 J cm−2) and pulse exposure of a few hundred pulses, the debris appears as concentrated narrow “filaments” connecting the ablation spots, while at higher fluence, (F ~ 5.0 J cm−2) energetic jets of material emanated symmetrically along the axes of symmetry, depositing debris well beyond the typical re-deposition radius with a single spot. Patterns of backward re-deposition of debris to the surface are likely connected with the colliding shock waves and plasma plumes with the ambient air causing stagnation when the spots are in close proximity. The 2D surface debris patterns are indicative of the complex 3D interactions involved over wide timescales during ablation from picoseconds to microseconds

    Formation of Nano- and Micro-Scale Surface Features Induced by Long-Range Femtosecond Filament Laser Ablation.

    No full text
    In this work, we study the characteristics of femtosecond-filament-laser-matter interactions and laser-induced periodic surface structures (LIPSS) at a beam-propagation distance up to 55 m. The quantification of the periodicity of filament-induced self-organized surface structures was accomplished by SEM and AFM measurements combined with the use of discrete two-dimensional fast Fourier transform (2D-FFT) analysis, at different filament propagation distances. The results show that the size of the nano-scale surface features increased with ongoing laser filament processing and, further, periodic ripples started to form in the ablation-spot center after irradiation with five spatially overlapping pulses. The effective number of irradiating filament pulses per spot area affected the developing surface texture, with the period of the low spatial frequency LIPSS reducing notably at a high pulse number. The high regularity of the filament-induced ripples was verified by the demonstration of the angle-of-incidence-dependent diffraction of sunlight. This work underlines the potential of long-range femtosecond filamentation for energy delivery at remote distances, with suppressed diffraction and long depth focus, which can be used in biomimetic laser surface engineering and remote-sensing applications

    Formation of Nano- and Micro-Scale Surface Features Induced by Long-Range Femtosecond Filament Laser Ablation

    No full text
    In this work, we study the characteristics of femtosecond-filament-laser–matter interactions and laser-induced periodic surface structures (LIPSS) at a beam-propagation distance up to 55 m. The quantification of the periodicity of filament-induced self-organized surface structures was accomplished by SEM and AFM measurements combined with the use of discrete two-dimensional fast Fourier transform (2D-FFT) analysis, at different filament propagation distances. The results show that the size of the nano-scale surface features increased with ongoing laser filament processing and, further, periodic ripples started to form in the ablation-spot center after irradiation with five spatially overlapping pulses. The effective number of irradiating filament pulses per spot area affected the developing surface texture, with the period of the low spatial frequency LIPSS reducing notably at a high pulse number. The high regularity of the filament-induced ripples was verified by the demonstration of the angle-of-incidence-dependent diffraction of sunlight. This work underlines the potential of long-range femtosecond filamentation for energy delivery at remote distances, with suppressed diffraction and long depth focus, which can be used in biomimetic laser surface engineering and remote-sensing applications
    corecore