6 research outputs found

    Self-pruning Graph Neural Network for Predicting Inflammatory Disease Activity in Multiple Sclerosis from Brain MR Images

    Full text link
    Multiple Sclerosis (MS) is a severe neurological disease characterized by inflammatory lesions in the central nervous system. Hence, predicting inflammatory disease activity is crucial for disease assessment and treatment. However, MS lesions can occur throughout the brain and vary in shape, size and total count among patients. The high variance in lesion load and locations makes it challenging for machine learning methods to learn a globally effective representation of whole-brain MRI scans to assess and predict disease. Technically it is non-trivial to incorporate essential biomarkers such as lesion load or spatial proximity. Our work represents the first attempt to utilize graph neural networks (GNN) to aggregate these biomarkers for a novel global representation. We propose a two-stage MS inflammatory disease activity prediction approach. First, a 3D segmentation network detects lesions, and a self-supervised algorithm extracts their image features. Second, the detected lesions are used to build a patient graph. The lesions act as nodes in the graph and are initialized with image features extracted in the first stage. Finally, the lesions are connected based on their spatial proximity and the inflammatory disease activity prediction is formulated as a graph classification task. Furthermore, we propose a self-pruning strategy to auto-select the most critical lesions for prediction. Our proposed method outperforms the existing baseline by a large margin (AUCs of 0.67 vs. 0.61 and 0.66 vs. 0.60 for one-year and two-year inflammatory disease activity, respectively). Finally, our proposed method enjoys inherent explainability by assigning an importance score to each lesion for the overall prediction. Code is available at https://github.com/chinmay5/ms_ida.gi

    Networked web-cameras monitor congruent seasonal development of birches with phenological field observations

    Get PDF
    Ecosystems' potential to provide services, e.g. to sequester carbon, is largely driven by the phonological cycle of vegetation. Timing of phenological events is required for understanding and predicting the influence of climate change on ecosystems and to support analyses of ecosystem functioning. Analyses of conventional camera time series mounted near vegetation has been suggested as a means of monitoring phenological events and supporting wider monitoring of phenological cycle of biomes that is frequently done with satellite earth observation (EO). Especially in the boreal biome, sparsely scattered deciduous trees amongst conifer-dominant forests pose a problem for EO techniques as species phenological signal mix, and render EO data difficult to interpret. Therefore, deriving phonological information from on the ground measurements would provide valuable reference data for earth observed phonology products in a larger scale. Keeping this in mind, we established a network of digital cameras for automated monitoring of phenological activity of vegetation in the boreal ecosystems of Finland. Cameras were mounted at 14 sites, each site having 1-3 cameras. In this study, we used data from 12 sites to investigate how well networked cameras can detect the phenological development of birches (Betula spp.) along a latitudinal gradient. Birches typically appear in small quantities within the dominant species. We tested whether the small, scattered birch image elements allow a reliable extraction of colour indices and the temporal changes therein. We compared automatically derived phenological dates from these birch image elements both to visually determined dates from the same image time series and to independent observations recorded in the phenological monitoring network covering the same region, Automatically extracted season start dates, which were based on the change of green colour fraction in spring, corresponded well with the visually interpreted start of the season, and also to the budburst dates observed in the field. Red colour fraction turned out to be superior to the green colour-based indices in predicting leaf yellowing and fall. The latitudinal gradients derived using automated phenological date extraction corresponded well with the gradients estimated from the phenological field observations. We conclude that small and scattered birch image elements allow reliable extraction of key phonological dates for the season start and end of deciduous species studied here, thus providing important species-specific data for model validation and for explaining the temporal variation in EO phenology products.Peer reviewe

    blob loss: instance imbalance aware loss functions for semantic segmentation

    Full text link
    Deep convolutional neural networks have proven to be remarkably effective in semantic segmentation tasks. Most popular loss functions were introduced targeting improved volumetric scores, such as the Sorensen Dice coefficient. By design, DSC can tackle class imbalance; however, it does not recognize instance imbalance within a class. As a result, a large foreground instance can dominate minor instances and still produce a satisfactory Sorensen Dice coefficient. Nevertheless, missing out on instances will lead to poor detection performance. This represents a critical issue in applications such as disease progression monitoring. For example, it is imperative to locate and surveil small-scale lesions in the follow-up of multiple sclerosis patients. We propose a novel family of loss functions, nicknamed blob loss, primarily aimed at maximizing instance-level detection metrics, such as F1 score and sensitivity. Blob loss is designed for semantic segmentation problems in which the instances are the connected components within a class. We extensively evaluate a DSC-based blob loss in five complex 3D semantic segmentation tasks featuring pronounced instance heterogeneity in terms of texture and morphology. Compared to soft Dice loss, we achieve 5 percent improvement for MS lesions, 3 percent improvement for liver tumor, and an average 2 percent improvement for Microscopy segmentation tasks considering F1 score.Comment: 23 pages, 7 figures // corrected one mistake where it said beta instead of alpha in the tex

    FedCostWAvg: A New Averaging for Better Federated Learning

    Full text link
    We propose a simple new aggregation strategy for federated learning that won the MICCAI Federated Tumor Segmentation Challenge 2021 (FETS), the first ever challenge on Federated Learning in the Machine Learning community. Our method addresses the problem of how to aggregate multiple models that were trained on different data sets. Conceptually, we propose a new way to choose the weights when averaging the different models, thereby extending the current state of the art (FedAvg). Empirical validation demonstrates that our approach reaches a notable improvement in segmentation performance compared to FedAvg

    Comparing methods of detecting and segmenting unruptured intracranial aneurysms on TOF-MRAS: The ADAM challenge

    Get PDF
    Accurate detection and quantification of unruptured intracranial aneurysms (UIAs) is important for rupture risk assessment and to allow an informed treatment decision to be made. Currently, 2D manual measures used to assess UIAs on Time-of-Flight magnetic resonance angiographies (TOF-MRAs) lack 3D information and there is substantial inter-observer variability for both aneurysm detection and assessment of aneurysm size and growth. 3D measures could be helpful to improve aneurysm detection and quantification but are time-consuming and would therefore benefit from a reliable automatic UIA detection and segmentation method. The Aneurysm Detection and segMentation (ADAM) challenge was organised in which methods for automatic UIA detection and segmentation were developed and submitted to be evaluated on a diverse clinical TOF-MRA dataset.A training set (113 cases with a total of 129 UIAs) was released, each case including a TOF-MRA, a structural MR image (T1, T2 or FLAIR), annotation of any present UIA(s) and the centre voxel of the UIA(s). A test set of 141 cases (with 153 UIAs) was used for evaluation. Two tasks were proposed: (1) detection and (2) segmentation of UIAs on TOF-MRAs. Teams developed and submitted containerised methods to be evaluated on the test set. Task 1 was evaluated using metrics of sensitivity and false positive count. Task 2 was evaluated using dice similarity coefficient, modified hausdorff distance (95th percentile) and volumetric similarity. For each task, a ranking was made based on the average of the metrics.In total, eleven teams participated in task 1 and nine of those teams participated in task 2. Task 1 was won by a method specifically designed for the detection task (i.e. not participating in task 2). Based on segmentation metrics, the top two methods for task 2 performed statistically significantly better than all other methods. The detection performance of the top-ranking methods was comparable to visual inspection for larger aneurysms. Segmentation performance of the top ranking method, after selection of true UIAs, was similar to interobserver performance. The ADAM challenge remains open for future submissions and improved submissions, with a live leaderboard to provide benchmarking for method developments at https://adam.isi.uu.nl/
    corecore