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Abstract 18 

 19 

Ecosystems’ potential to provide services, e.g. to sequester carbon, is largely driven by the phenological 20 

cycle of vegetation. Timing of phenological events is required for understanding and predicting the 21 

influence of climate change on ecosystems and to support analyses of ecosystem functioning. Analyses 22 

of conventional camera time series mounted near vegetation has been suggested as a means of 23 

monitoring phenological events and supporting wider monitoring of phenological cycle of biomes that is 24 

frequently done with satellite earth observation (EO). Especially in the boreal biome, sparsely scattered 25 

deciduous trees amongst conifer-dominant forests pose a problem for EO techniques as species 26 

phenological signal mix, and render EO data difficult to interpret.  Therefore, deriving phenological 27 

information from on the ground measurements would provide valuable reference data for earth 28 

observed phenology products in a larger scale. Keeping this in mind, we established a network of digital 29 

cameras for automated monitoring of phenological activity of vegetation in the boreal ecosystems of 30 

Finland. Cameras were mounted at 14 sites, each site having 1-3 cameras. In this study, we used data 31 

from 12 sites to investigate how well networked cameras can detect the phenological development of 32 

birches (Betula spp.) along a latitudinal gradient. Birches typically appear in small quantities within the 33 

dominant species. We tested whether the small, scattered birch image elements allow a reliable 34 

extraction of colour indices and the temporal changes therein. We compared automatically derived 35 

phenological dates from these birch image elements both to visually determined dates from the same 36 

image time series and to independent observations recorded in the phenological monitoring network 37 

covering the same region. Automatically extracted season start dates, which were based on the change 38 

of green colour fraction in spring, corresponded well with the visually interpreted start of the season, 39 

and also to the budburst dates observed in the field.  Red colour fraction turned out to be superior to 40 

the green colour-based indices in predicting leaf yellowing and fall. The latitudinal gradients derived 41 

using automated phenological date extraction corresponded well with the gradients estimated from the 42 
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phenological field observations. We conclude that small and scattered birch image elements allow 43 

reliable extraction of key phenological dates for the season start and end of deciduous species studied 44 

here, providing thus important species-specific data for model validation and for explaining the 45 

temporal variation in EO phenology products. 46 

 47 

Keywords: birch, budburst, camera, monitoring, phenology, time lapse 48 

  49 



    

      

4 
 

1 Introduction 50 

Timing of spring onset has advanced significantly during the last century (Menzel et al., 1999, Menzel et 51 

al., 2006, Delbart et al., 2008, Jeong et al., 2011, Zhao et al., 2015). Seasonal variation of vegetation 52 

activity directly affects photosynthesis, growth of trees and plant reproductive investment, so it is an 53 

important driver of the global carbon balance and thus is strongly linked to climate change (Hogg et al., 54 

2000, Richardson et al., 2013). A recent study that compared phenological data to predictions of 36 tree 55 

phenology models showed that both inter-annual and spatial variations of phenology is poorly predicted 56 

by the models (Basler et al., 2016). This is critical as the year-to-year variation in the timing of budburst 57 

of birches (Betula spp.) in the boreal zone varies in a wide range of 40 days (Häkkinen, 1999).  Poor 58 

reproduction of the phenological cycle in biosphere models has also been shown to cause a consistent 59 

overestimation of carbon balance in comparison to measured data (Richardson et al., 2012, 2013). The 60 

predictive power of models can be expected to further degrade under climate change, due to 61 

decoupling of light and temperature cycles. Decoupling of these cycles will be pronounced in northern 62 

latitude forests, which are expected to face increases of mean temperatures by 2-7 °C (Ruosteenoja et 63 

al., 2016). Therefore, continuous, long-term monitoring of vegetation activity is needed. 64 

 65 

Phenological monitoring has a long tradition, and phenological observation networks exist in many 66 

countries across the world (Siljamo et al., 2008). At the same time, many spectro- and radiometric 67 

instruments suitable for phenological monitoring are operating from space, complementing the dating 68 

of phenological events over wider regions (Zhang et al. 2006, Böttcher et al., 2014, Gonsamo et al., 69 

2016). In recent years, also near-surface remote sensing with time lapse imaging (Richardson et al., 70 

2007) has provided a cost-effective methodology to monitor and ground-truth phenological phenomena 71 

(Hufkens at al., 2012, Klosterman et al., 2014). Time lapse imaging solves some of the problems 72 

associated with traditional field observations, as more quantitative methods can be used to define the 73 

start of the growing season, for example, while still maintaining the link to the visual appearance of 74 
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plants. Time-lapse image based phenological development could also provide a closer analogy to remote 75 

sensing than field observations of phenology, which are not fully comparable with remote sensing 76 

observations as they detect different traits (Badeck et al., 2004). Methodologically, automated curve 77 

fitting and transition date extraction methods used for camera image time series have similarities with 78 

EO data processing (Elmore et al., 2014; Klosterman et al., 2014).   79 

 80 

Cameras have most often been used to analyse the phenological development of deciduous species 81 

(Richardson et al., 2007), although also other types of ecosystems, such as grasslands (e.g. Migliavacca 82 

et al., 2011), peatlands (Westergaard-Nielsen et al., 2013, Peichl et al., 2015, Linkosalmi et al., 2016) and 83 

coniferous forests (Nagai et al., 2012, Linkosalmi et al., 2016), have been monitored. Analyses are robust 84 

to the scene illumination angle, cloud cover and camera type, if suitable analysis methods are used 85 

(Sonnentag et al., 2012; Linkosalmi et al., 2016; Peltoniemi et al., 2017). Colour changes in plant tissue 86 

are unlikely to occur without a biochemical or biophysical mechanism, and digital photography has 87 

provided insight into these mechanisms (Keenan et al., 2014; Yang et al., 2014). For deciduous species, 88 

budburst and leaf senescence events and also their relationship with CO2 exchange have been in a focus 89 

in a number of studies, and these phenomena have been analysed with various colour indices 90 

(Richardson et al., 2007, Ahrends et al., 2009, Sonnentag et al., 2012, Mizunuma et al., 2013, Wingate et 91 

al., 2015).  92 

 93 

There are still open questions regarding how the camera-derived phenological data should be used in an 94 

optimal way. It would be interesting to know how the image-extracted dates compare with those based 95 

on the field definitions used in phenological observation networks, and which transition dates can be 96 

extracted with sufficient accuracy. This would provide more solid basis for using cameras to supplement 97 

existing field observation networks. Secondly, a single image may provide a wealth of information on 98 

several species, some only appearing in the margins of the image or amidst the dominant vegetation in 99 
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smaller proportions and the understory, but the use of such information has been rare. Still, the non-100 

dominant elements potentially provide important information for interpreting earth observations, which 101 

aggregate information from an area that may not be fully represented by the species dominating the 102 

camera view (Hufkens et al., 2012). In the boreal zone, deciduous trees often occur in relatively small 103 

and fragmented areal proportions in the satellite footprint. While the areal proportion may be small, 104 

their phenology causes distinctive changes in the reflective properties of canopies (Böttcher et al., 2014; 105 

Jönsson et al., 2010), which complicates phenological analyses of conifers, and may even render results 106 

unreliable.. Species-specific phenological information drawn from image time series combined with 107 

high-resolution earth observation data on species distributions could markedly improve the quality of 108 

satellite-based phenology estimation (Liang et al., 2011; Liu et al.2015). If part of the monitoring would 109 

be based on scattered and smaller species-specific image elements, and not only camera views 110 

dominated by species, the cost of representative monitoring of wide area phenology would naturally be 111 

reduced. 112 

 113 

We established a network of cameras at 14 boreal sites in Finland, each including 1-3 cameras in 114 

different positions. Most of the sites in the network are dominated by Scots pine (Pinus sylvestris) and 115 

Norway spruce (Picea abies), and some are peatlands. Twelve of the sites have a varying mixture of 116 

Betula spp., allowing a cross-site study of their phenology, and making it possible to study how these 117 

sometimes small and marginal image elements of widely distributed species could benefit phenological 118 

monitoring using web-cameras.  119 

 120 

The objectives of this study were to test the use of the recently established camera network for birch 121 

phenology analysis and supplementing existing phenological field observations. We were interested in 122 

how selected color indices compare to the conventional phenological observations, and whether the 123 

scattered and often small birch elements within the images provide a useful source of information for 124 
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the phenology analysis. The tests were performed by comparing the phenological transition dates 125 

extracted from the image time series to the corresponding visual estimates, and to those observed in 126 

the field in the frame of phenological observation network of Finland, which covers a long latitudinal 127 

transect ranging from 60°N to nearly 70°N (Poikolainen et al., 1996; Pudas et al., 2008). 128 

 129 

  130 
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2 Materials and Methods 131 

 132 

2.1 Sites and camera installations 133 

Camera sites cover nearly the full range of climatic variations observed in Finland, their location ranging 134 

from the hemiboreal Tvärminne to the sub-arctic Kaamanen (Figure 1, Table 1). Three of the northern 135 

sites are wetlands [Sodankylä wetland, Kaamanen, Lompolojänkkä Integrated Carbon Observation 136 

System (ICOS) sites] and two are dominated by P. sylvestris (Scots Pine)(Sodankylä ICOS site, Värriö), and 137 

one by Picea abies L. Karst (Norway spruce) (Kenttärova, ICOS site). The Paljakka site in central Finland is 138 

dominated by spruce and it belongs to the long-term phenology monitoring network of Luke, as does 139 

the mixed species site Parkano in southern Finland. The other southern sites are dominated by P. 140 

sylvestris (Hyytiälä ICOS site), Picea abies L. Karst (Punkaharju, Tammela Level II monitoring sites of the 141 

International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on 142 

Forests, ICP), or have mixed or deciduous coverage (Tvärminne, Lammi Long Term Ecosystem Research 143 

(LTER) sites). The sites vary in their ancillary measurements, the most intensively measured sites being 144 

the ICOS sites in Hyytiälä and Sodankylä while the Suonenjoki P. sylvestris site only hosts a 145 

meteorological station.  146 

Table 1 Cameras and sites used in this study, the total numbers of pixels analysed for each site, and DOI 147 
to original image time series. Coordinates are in decimal degrees WGS84. 148 
No
. 

Site Lat.  Lon.  Camera 
view / 
dominant 
species 

Species  Spring 
period
s in 
data 

Autum
n 
period 
in data 

Pixels 
in 
target 
ROI 

DOI2 

1 Hyytiälä 
(crown) 

61.8
5 

24.3
0  

Forest 
canopy / 
P. 

sylvestris 

B. 

pendula 

2014-
2016 

2014-
2016 

266951 10.5281/zenodo.81555
9 

 

2 Kaamanen 
69.1
4 

27.2
7 

Wetland / 
Sphagnu

m spp.  

B. 

pubescen

s 

2015-
2016 

2015 – 
(2016) 

39527 10.5281/zenodo.81555
3 

3 Kenttärova 
(canopy) 67.9

9 
24.2
4 

Forest 
canopy / 
P. abies 

B. 

pubescen

s 

2015-
2016 

2015-
2016 

51370 10.5281/zenodo.81551
9 

 

4 Lammi 61.0 25.0 Mixed B. 2016 2016 59865 10.5281/zenodo.81554
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(landscape) 5 4 landscape 
/ B. 

pendula 

pendula 0 2 

 

5 Lompolojänkk
ä 69.8

0 
24.2
1 

Wetland / 
grasses 

B. 

pubescen

s 

2015 2015 32472
8 

10.5281/zenodo.81555
5 

6 Paljakka 
64.6
8 

64.6
8 

Mixed 
landscape 
/ P. abies 

B. 

pubescen

s 

2016 2015 16867 10.5281/zenodo.81552
9 

7 Parkano 

62.0
3 

23.0
4 

Mixed 
landscape 
/ B. 

pendula 

B. 

pendula 

2016 2015-
2016 

48718
4 

10.5281/zenodo.81548
7 

8 Sodankylä, 
wetland 67.3

7 
26.6
5 

Wetland / 
Sphagnu

m spp. 

B. 

pubescen

s 

2014-
2015 

2014-
2016 

64076 10.5281/zenodo.81548
5 

9 Suonenjoki 

62.6
4 

27.0
5 

Forest 
crown 
level / P. 

sylvestris 

B. 

pendula 

2016 2015-
2016 

15575
8 

10.5281/zenodo.81548
9 

10 Tammela 
(canopy) 60.6

5 
23.8
1 

Forest 
canopy / 
P. abies 

B. 

pendula 

2014-
2016 

2014-
2016 

46022 10.5281/zenodo.81545
0 

11 Tvärminne 

59.8
4 

23.2
5 

Mixed 
landscape 
/ P. 

sylvestris 

B. 

pendula 

2016 2016 77705 10.5281/zenodo.81555
0 

12 Värriö (crown) 

67.7
5 

29.6
1 

Forest 
crown 
level / P. 

abies 

B. 

pubescen

s 

2015-
2016 

2016 19142
3 

10.5281/zenodo.81553
4 

 

 N site-years     20 21   

1 Hyytiälä crown camera had resolution 1024 x 768 while others had 2594 x 1944. 149 

2 Peltoniemi et al., 2017 150 

 151 

All cameras are set to a fixed white balance, quarter of the maximum resolution (5 MPix), targeted 152 

northwards where feasible and triggered for half-hourly submission of snapshots to an ftp server, 153 

excluding the night hours. All of the sites and analyses of this study used image time series acquired 154 

with StarDot NetCam SC5 cameras.  155 

 156 
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2.2 Phenological analyses 157 

Material for phenological analyses 158 

 159 

In this study, we used 12 networked cameras for the analyses of spring and autumn phenology of Betula 160 

spp from 2014-2016. Installation and operation dates of the cameras varied, and not every camera 161 

covered the whole period. Some cameras had suffered from damages or mounting failures, and had 162 

been reinstalled causing gaps in time series. Therefore, depending on the availability of images at the 163 

camera site during this period, we analysed the phenology of either a full year or a limited spring or 164 

autumn period, as indicated in Table 1. 165 

 166 

The ROIs were selected subjectively to cover the sub-regions that best represented the birch crowns 167 

within the camera view (Appendix A). Consequently, ROIs varied in shape, size and the number of sub-168 

polygons defining the ROI, depending on the features and number of suitable targets. The number of 169 

sub-polygons varied from 1 to 6 per image time series, the ROIs most often representing individual trees 170 

in the images.   171 

 172 

Targeted crowns in the ROI also had a variable background, depending on whether there were conifer 173 

crowns, peatland vegetation or sky in the background of the targeted crown. Some of the targets were 174 

large and had a uniform background, while others were small and had uniform background. Based on 175 

preliminary analysis, we excluded two targets that had seedling birches against an understory 176 

vegetation background, to avoid risk confusing two distinctive sources of vegetation signals, and one 177 

target with a single distant birch tree against conifers (excluded partly due to camera movement). The 178 

remaining unclear cases were analysed in order to study if their phenological transition dates are 179 

plausible with respect to other sites’ results and other materials. For these purposes, targets were 180 

classified either as distant-small and near-clear, and effects of category tested in Anova (see below).  181 
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 182 

For each ROI, we calculated the mean green chromatic coordinate (GCC) and red chromatic coordinate 183 

(RCC) as GCC = G / (R + G + B) and RCC = R / (R + G + B)], where R, G, and B, and pixel red, green, and 184 

blue channel digital numbers, respectively. For the extraction of digital numbers from images, and the 185 

calculation of these indices, we used a custom made program (FMIPROT, Tanis et al., submitted).  186 

 187 

The pixels of ROIs with poor or excess exposure were excluded from the GCC calculation; we used only 188 

pixels with digital numbers between 30 and 254, to avoid too dim and overexposed pixels and their non-189 

linear effects on GCC and RCC. The use of R, G and B threshold therefore eliminated images from the 190 

darkest periods in winter in northern Finland. 191 

 192 

The image time series consisted of half-hourly images that were taken within the daily period of 8:00-193 

16:00 UTC+2. From all images available for a day, and for all days, we calculated daily medians of GCC 194 

and RCC, which were used in subsequent analyses. We also calculated daily 90th upper percentiles, but 195 

as our preliminary analysis showed that the median provided less noisy (but otherwise very similar) 196 

results, we used the daily medians in the final analyses.  197 

 198 

 199 

Turning point estimation from continuous color indexes: phenological transition dates 200 

 201 

We fitted continuous curves to the GCC and RCC data (daily medians), which allowed the estimation of 202 

turning points that correspond to the transition dates. The curve fits were made between DOY 90 (Mar 203 

1st) and 310 (Oct 6th), except for the northernmost Kaamanen site, where we started the fits on DOY 125 204 

(Mar 25th), and the second northernmost Värriö site, where we ended the fit period on DOY 300 (Sep 205 

27th). Focusing the fits on these periods eliminated the infection of colour signals by canopy snow cover 206 
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and dark winter days, which can bias the signal and add variation to GCC (Linkosalmi et al., 2016), and 207 

thus negatively influence the curve fitting and subsequent extraction of GCC transition dates. Any gaps 208 

in the GCC time series, due to low light or camera malfunctioning, were filled with linear interpolation.  209 

 210 

We fitted different versions of double logistic functions (Gu et al., 2009, Elmore et al., 2012, Klosterman 211 

et al., 2014) to the GCC data. The formulation by Gu et al. (2009) produced curves that systematically 212 

fitted well to the data. While the methods of Klosterman et al. (2014) and Elmore et al. (2012) typically 213 

produced good fits, but sometimes they produced very poor fits. This was likely because Klosterman et 214 

al. (2014) and Elmore et al. (2012) included more parameters than Gu et al. (2009), which made the 215 

regression more unstable. Therefore in subsequent analyses, we only used the method of Gu et al. 216 

(2009) as implemented in phenopix (Filippa et al., 2016), which fits the function of the following form:  217 

 218 

���(�) = �� +  ��

���!"#$�#�(%#%&�)'*
,� − �.

���!"#$.#�(%#%&.)'*
,. (1) 219 

where GCC(t) is the GCC median of day t, and y0, a1, b1, c1, t01, a2, b2, c2, and t02 are parameters to be 220 

estimated. The equation is composed of two modified logistic functions that characterize increasing and 221 

decreasing parts of the season. The function is flexible, but may omit finer variation of season 222 

progression. The uncertainty of fits and subsequent estimation of transition date estimates (see below) 223 

was made with a method implemented in GuFit() function of the phenopix library, i.e. by repeating the 224 

fit 100 times by introducing uncertainty to the observations. 225 

 226 

Statistical performance of the double exponential fits was evaluated and compared by calculating the 227 

root mean squared deviation (RMSD) by site and year as RMSD = (sum((gi-pi)/n))½ where i is day, g is the 228 

observed GCC, p is the modelled GCC, and n is the number of days. The median and the 2.5 and 97.5 229 
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percentiles of RMSD were estimated for each site-year combination from the ensemble of 100 fits so as 230 

to evaluate the uncertainty of fits. 231 

 232 

We also used  SplineFit() function from the phenopix R library (Filippa et al., 2016) to fit cubic spline 233 

regressions to the daily time series of GCC and RCC (Filippa et al., 2016). The fit is sensitive to the 234 

selection of the degree of freedom of the fit (parameter k). We allowed the fit algorithm to select the 235 

optimum k automatically. We also made preliminary tests of the effects of k selection to the fits and 236 

subsequent transition date estimation, but found out that the varied k values around the optimal k 237 

produced very similar estimates of season transition dates, and hence report only the fits and transition 238 

dates with the optimal k. RMSD was estimated similarly as with the double-logistic fit. 239 

 240 

We extracted phenological transition dates from the fitted curves with the PhenoExtract() function of 241 

the phenopix library. For spline fits, we used the ’derivatives’ method that extracts the dates when the 242 

GCC increase is steepest in the spring (SOS, start of season) and when the autumnal decrease in GCC is 243 

steepest (EOS, end of season), as implemented in the greenbrown R library (Forkel et al., 2015, Forkel 244 

and Wutzler 2015). The date of the maximum GCC during the season was denoted as POP (peak of 245 

season).  Additionally, we estimated the end of season from the peak of spline smoothed RCC (EOSr, end 246 

of season RCC). The methods for estimating the transition dates are shortly described in  247 

Table 2. For the double logistic fit using the method presented by Gu et al. (2009), we extracted the 248 

transition dates estimating the first marks of fractional increase of green color (GCC) of leaves (UD, 249 

upturn date), the stabilization date of this fraction to summer levels (SD, stabilization date), the first 250 

marks of autumn decline (DD, downturn date), and the levelling of GCC to late autumn levels (RD, 251 

recession date).  252 

Table 2 Automatically estimated phenological transition dates from image time series. 253 
Acronym Variable name  Explanation Reference 
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DD Downturn date Intersection of horizontal lines through summer GCC 
plateau and line tangential to the peak senescing point 
that is estimated from the minimum of the first 
derivative of GCC. 

(Gu et al., 2009); 
(Filippa et al., 2016) 

EOS End of season 
(from GCC) 

Midpoint of the autumn senescence period, defined as 
the maximum of the first derivative of the senescing 
curve. Used for spline fitted seasonal development. 

(Forkel et al., 2015); 
(Forkel and Wutzler 
2015) 

EOSr End of season 
(from RCC) 

Maximum of the spline fitted RCC curve in the autumn.  - 

POP Peak of season Maximum of the spline fitted GCC curve in the season. (Filippa et al., 2016) 
SOS Start of season Used for spline fitted seasonal development. (Forkel et al., 2015); 

(Forkel and Wutzler 
2015) 

RD Recession date Intersection of horizontal lines through autumn 
minimum GCC and line tangential to the peak senescing 
point that is estimated from the minimum of the first 
derivative of GCC. Occurs generally when leaves grow 
fast in the spring. 

(Gu et al., 2009); 
(Filippa et al., 2016) 

SD Stabilization date Intersection of horizontal lines through summer GCC 
plateau and line tangential to the peak recovery point 
that is estimated from the maximum of the first 
derivative of GCC.  

(Gu et al., 2009); 
(Filippa et al., 2016) 

UD Upturn date Intersection of horizontal lines through spring minimum 
GCC and line tangential to the peak recovery point that 
is estimated from the maximum of the first derivative 
of GCC. Occurs generally when leaves grow fast in the 
spring. 

(Gu et al., 2009); 
(Filippa et al., 2016) 

 254 
 255 

Phenological field observations 256 

 257 

We used a subset of data for years 2015-2016 from the phenological field observation network 258 

operating in Finland (Poikolainen et al., 1996; Pudas et al., 2008). The number of locations in this subset 259 

was 17 and the sites covered the latitudinal domain of phenology cameras (Table 3, Figure 1). At each 260 

stand the observations were made individually by observing five medium-sized and healthy birches. 261 

 262 

Table 3 Phenological field observation sites used in the study. 263 
ID Site Latitude Longitude Species 

a  Aulanko  61.02 24.46 B. pubescens 

b  Joensuu  62.6 29.73 B. pubescens & B. pendula  

c  Kannus  63.93 23.89 B. pubescens & B. pendula  

d  Kevo  69.76 27.01 B. pubescens   

e  Kolari  67.35 23.83 B. pubescens & B. pendula  
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f  Lapinjarvi  60.62 26.17 B. pubescens & B. pendula  

g  Muddusjarvi  69.06 27.11 B. pubescens  

h  Muhos  64.82 26.01 B. pubescens & B. pendula  

i  Oulanka  66.35 29.32 B. pubescens & B. pendula  

j  Parkano  62.03 23.04 B. pubescens & B. pendula  

k  Preitila  60.45 22.76 B. pubescens & B. pendula  

l  Punkaharju  61.81 29.33 B. pubescens & B. pendula  

m  Ruotsinkyla  60.36 24.99 B. pubescens & B. pendula  

n  Solbole  60.04 23.04 B. pubescens & B. pendula  

o  Suonenjoki  62.64 27.06 B. pendula  

p  Varrio  67.75 29.61 B. pubescens & B. pendula  

q  Vesijako  61.39 25.05 B. pubescens & B. pendula  

 264 

According to the field guide of the network (Kubin et al., 2007), the budburst date (‘Budburst’) was 265 

recorded when half of the leaves of Betula spp.have emerged from the bud. However, these leaves have 266 

not yet unfolded, i.e. the blade and midrib of leaves are not yet visible. The guide complements this 267 

definition by stating that at budburst the trees show the first marks of green colour in spring from a 268 

distance. We compared these dates to imagesextracted UD and SOS. 269 

 270 

An estimate of the date when leaves have grown to full size and thickness (‘Leaves grown’) was 271 

recorded when there was no apparent increase in size or thickness of the individual leaves of the crown. 272 

At this time crowns of birches usually have also reached their full density. We compared these dates to 273 

image extracted SD. 274 

 275 

The leaf yellowing date (‘Leaves yellow’) was defined as the date when 50% of individual crowns have 276 

yellow leaves due to the normal autumnal senescence process, and not due to diseases such as leaf rust 277 

fungi. We compared these dates to image extracted EOSr. 278 

 279 

The leaf fall date (‘Leaves fallen’) was defined as the date when 50% of leaves of individual tree crowns 280 

had shed leaves.  281 

 282 
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Visual transition estimates from image time series 283 

Using turning point analysis we also compared the transition dates extracted from the image time series 284 

to the visually determined season transition dates from the same image time series, so as to verify how 285 

well the automated analysis is able to detect transition dates and periods determined visually by going 286 

through image time series (half-hourly images). When several targets were available from an 287 

observation site, the means of all trees of focal species were recorded to visually determine the 288 

transition dates. This also corresponds to the automatically extracted GCC that were estimated either as 289 

a mean of several polygons if several trees of same species were present, or as a mean of a wider image 290 

area of homogeneous canopy.  291 

 292 

An experienced phenological observer, who had no other association with the data analyses, developed 293 

and used a protocol for detecting birch leaf budburst, maturation and leaf autumn colouring from image 294 

time series. The observer followed, as closely as possible, the same field guidance as was used within 295 

the phenological observation network (Kubin et al., 2007), although obvious modifications were 296 

introduced due to the low resolution of images and, in some cases, distant elements. The estimation of 297 

the budburst date of Betula spp. relied on the colour change of the tree crowns, as it was rarely possible 298 

to distinguish individual leaves. This definition presumably yields results that are very close to those 299 

from the observation network, which also takes note of the colour change of the canopy from a 300 

distance.  We compared these budburst estimates to UD and SOS. 301 

 302 

An image-based estimate corresponding to the ‘Leaves grown’ estimate of the observation network was 303 

defined as the date when the birch crowns have reached their full density. After this date the crowns 304 

start to lose their distinctive light green colour. We compared these estimates to SD and POP. 305 

  306 
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Instead of a single date corresponding to the leaf yellowing date, we estimate a period during which 307 

leaves turn yellow, so as to better quantify the correspondence with the automatically estimated DD 308 

and RD. These dates were defined as the date at which 10% and 90% of leaves are yellow or brown, and 309 

it was assumed that the field-observed date when 50% of leaves were yellow occurs between these 310 

dates. A similar approach was used to estimate the leaf fall period (10% and 90% fallen). These dates 311 

presumably contained the field-observed date (when 50% of leaves had fallen), had we had a direct field 312 

observation of the imaged trees. We also compared these dates to EOS and EOSr. 313 

 314 

Statistical comparisons and effect analyses 315 

 316 

Irradiance conditions have been earlier found to influence GCC of conifers, rendering images useless 317 

when it is too dark (Linkosalmi et al., 2016). We studied if radiation and temperature can explain day-to-318 

day variation in GCC data, e.g. by exposing different and a variable number of pixels for the GCC or RCC 319 

calculation of the ROI depending mostly on the light available to the inner canopy, or by influencing 320 

camera image cell sensitivity, respectively. Given that day-to-day variation of midday irradiance and 321 

temperature can be large in comparison to slower pace shifts occurring in phenology, the absence or 322 

small contribution of these variables would indicate that they are unlikely to influence the analyses of 323 

derived transition dates. Alternatively, a large effect of these variables would indicate that irradiance 324 

changes bias the transition date estimates based on image time series.  325 

 326 

In order to estimate how large an effect light conditions and temperature can have on the GCC detected 327 

with the cameras, we fitted a linear mixed effects model with a temporal autocorrelation (AR1) term. 328 

Because GCC values are not comparable across sites, we scaled them by site and year to have mean of 329 

zero and unit standard deviation. The AR1 structure removes the trend-like variation in GCC by assuming 330 

that residuals of the model are auto-correlated, meaning that previous day’s GCC is accounted for in the 331 
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prediction of the present GCC, which evidently clears the data from seasonal changes of GCC. The model 332 

formulation makes it possible to estimate the direct effects of light conditions and temperature on the 333 

present GCC. The fitted model form was  334 

 335 

���� =  �� + �!"��� + �#$��� + �%$��� × "��� +  &��'()
+ &!��'*),

+ φ�����(�/!) + 1���,  336 

 (2) 337 

 338 

 339 

where y is the GCC observation, and subscripts i, j, and t denote the site, year, and day of the 340 

observation, respectively.  Fixed terms included the intercept (a0) and daily mean temperature (T) and 341 

global radiation (G), and interaction of T and G, with respective coefficients a1, a2, and  a3. For T and G 342 

we used spatially downscaled estimates made for the nearest grid point (Venäläinen et al., 2005). The 343 

model has intercepts b0i and b1ij for random terms u for sites (s) and years (Y), respectively. 344 

Autocorrelation was modelled with AR1 process having an autocorrelation coefficient 2. The model was 345 

fitted with the lme function of the R package nlme (Pinheiro et al., 2015). The model was fitted to a 346 

selected subset of the data including Hyytiälä (2014-2016), Kenttärova, Sodankylä and Tammela (2015-347 

2016), Kaamanen (2015), and Tvärminne and Värriö and Lammi (2016), which all had full time series 348 

from UD-10 to RD+10 days.  349 

 350 

For testing the relationship of GCC and RCC based estimates and the estimates based on visual 351 

interpretations of corresponding transition dates, we plotted 1:1 graphs, fitted linear models between 352 

the estimates and estimated their mutual correlation coefficient. We also used linear mixed effects 353 

models to estimate the significance of differences between the transition dates (UD, SOS, EOSr) 354 

estimated with different methods. Method types included GCC (or RCC) based estimation, visual 355 
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interpretation, and field observation. Field observation was not conducted at camera sites, so we also 356 

included latitude (and year) in this regression. The transition date yit estimated with these methods was 357 

modelled as 358 

��� =  �� +  �!3� +  �#4�� +  �%3� × 4�� + �56�� + &��'()
+ 1��  (3) 359 

where a0 is the intercept, a1, a1, and a2 are the coefficients for li is the latitude (easting (m) of the Finland 360 

Uniform Coordinate System) of the site and Yij (year), and their interaction, respectively. Eij is the 361 

method of the observation of the observation, having a3 as its coefficient. Coefficients b0i are for the 362 

random terms u for sites si, and eit is the normally distributed error. We also estimated separate linear 363 

regressions to investigate the latitudinal relationships of transition dates obtained from cameras and the 364 

field observation network. All statistical analyses were made in R (R Core Team, 2015). 365 

 366 

  367 
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3 Results 368 

Fits to GCC and RCC data 369 

Double logistic fits replicated the upturn of the GCC response at season start for the birch ROI at Lammi 370 

(Appendix A, Figure 2) and the other sites as well as the spline regression (Appendixes A and B). 371 

However, the slope of the senescing trail of GCC after the season peak varied by site and year, and 372 

double logistic function did not always fit to shapes of the trails (Appendix B). The parametrically more 373 

flexible spline regressions were able to catch the whole seasonal course of GCC and had better RMSD 374 

than double logistic fits (0.00172 vs, 0.00216, seeAppendix C). However, being sensitive to within season 375 

variation of GCC, it sometime falsely interpreted season end from GCC data (EOS) (Figure 2). For the 376 

season end date, estimates obtained for red peak (EOSr) of the spline smoothed RCC were always 377 

plausible (Figure 3, Appendix B).  378 

 379 

For double logistic fit, the uncertainty of transition date extraction varied. Uncertainty ranges of UD, SD, 380 

and RD (10th - 90th percentile range) were on average 1.0, 1.4, and 2.5 d, respectively, while for DD it 381 

was 5.6 d. 382 

 383 

Based on the autocorrelation model (Eq. 1), radiation had small, yet significant, effect on the observed 384 

day-to-day GCC variation (Table 4). Altogether, the fixed covariates (temperature, radiation and their 385 

interaction) were able to explain 1.6% of day-to-day variation of GCC (average across site-years).  386 

 387 

Table 4 Results of the model (fixed terms) explaining day-to-day variation in GCC (scaled to zero mean 388 
and unit standard deviation) with daily mean temperature (T, °C) and radiation sum (G, MJ m-2 day-1), 389 
and their interaction. φ is the autocorrelation coefficient of the AR1 autocorrelation structure. 390 

 
Dependent variable: 

 
GCC 

a0 (intercept) -0.27 

 
(0.17) 
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a1 (T) 0.0014 

 
(0.0036) 

a2 (G) -0.0120
***

 

 

(0.0030) 

 

a3 (G x T) 
0.00068*** 

(0.00021) 

φ 0.97 

Observations 2317 

Log Likelihood -221.38 

Akaike Inf. Crit. 458.77 

Bayesian Inf. Crit. 504.75 

Note: 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 

 391 

None of the transition dates, nor the length of green-up period (SD-UD) or season (EOSr-SOS) were 392 

explained by the type of the ROI (distant and small vs. near and clear) as analysed by linear mixed 393 

effects models with and without the latitude covariate (all p > 0.05, models not shown, for data see 394 

Appendix C). 395 

 396 

Comparison of season start estimates 397 

The estimates of transition dates for start of the season (SOS) were significantly related to the visually 398 

estimated budburst date (Figure 3), but they were on average 6.37 days later than the visual estimate 399 

and field observation of the budburst date (Table 5).  400 

 401 

The upturn date (UD) was also significantly associated with the budburst date (Figure 4Error! Reference 402 

source not found.). The camera-observed UD was on average 3.46 and 4.08 days ahead of the visual and 403 

field observed budburst (Table 5). It is notable that the estimation of UD was occasionally interfered 404 

with by the preceding snowmelt that occurred in the background of the birch targets (Kenttärova and 405 

Värriö), which reduced the correlation.  406 

 407 
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The visual estimates of budburst were mostly between the estimated UD and SOS dates (16 out of 19 408 

cases where they could be compared) (Appendix C Table C.3).  409 

 410 

Comparison of season end estimates 411 

The autumn peak of RCC (EOSr) was clearly associated with the visual season end estimates (90% of 412 

canopy yellow) (Figure 3). EOSr also associated with the date when 90% of leaves were interpreted as 413 

fallen from the tree crowns. EOS was less clearly associated with these events than EOSr (Figure 4). We 414 

found no statistical evidence that EOSr would be different from the visually interpreted leaf yellowing 415 

date (Table 5).  416 

DD and RD dates were weakly related to dates when 10% and 90% leaves were yellow or fallen. 417 

 418 

Comparison of midseason estimates 419 

POP was related with canopy maturation (leaves grown) but the relationship deteriorated with 420 

increasing DOY for the northern sites (Figure 3).  421 

 422 

SD was correlated with the visual estimate of the date of full-sized leaves but on average was dated 423 

earlier (Figure 4). 424 

 425 
Table 5 Model of transition dates with latitude, with method and year of observation as covariates. 426 
Yellowing date in field was recorded when 50% canopy was yellow, while visual camera based 427 
observations were made when 90% of the canopy was yellow. Interaction between the latitude and 428 
observation type were insignificant and not included in the models (p>0.05). 

*
p<0.1; 

**
p<0.05; 

***
p<0.01. 429 

Note, latitudinal slope is composed of two species, B. pubescent in north and B. pendula in south. 430 
 431 

Camera-based estimate UD  SOS EOSr 

Field/Vis. Observation Budburst  Budburst Leaves yellow 

Intercept (camera, 2015) -18.43 -7.81 439.71*** 

 
(12.62) (12.82) (23.52) 

Latitude (km) 2.14*** 2.14*** -2.47*** 

 
(0.18) (0.18) (0.33) 
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Year 2016 -5.17*** -6.24*** -8.03*** 

 
(0.76) (0.81) (1.26) 

Field obs. 4.08*** -6.41*** -1.26 

 
(1.26) (1.29) (2.32) 

Visual obs. 3.46*** -6.37*** 1.12 

 
(1.12) (1.18) (1.74) 

Observations 89 90 82 

Log Likelihood 
-

243.77 
-251.28 -263.08 

Akaike Inf. Crit. 501.53 516.56 540.15 

Bayesian Inf. Crit. 518.55 533.66 556.56 

Note: *p<0.1; **p<0.05; ***p<0.01 

 432 

 433 

 434 

 435 

 436 

Latitudinal gradients of transition dates 437 

Our camera network made it possible to determine the latitudinal gradient in transition dates across 438 

Finland. There was a clear south-north trend in the season lengths (Figure 6), the seasons becoming 439 

shorter by 4.81 (±0.63 Std. Err.) days per 100 km when moving northwards (Table 6).  This trend was 440 

caused by a later start (both SOS and UD) and earlier end (EOSr) of the season in the north, which 441 

increased by 2.07 (± 0.42; for UD 1.94 ± 0.40) and decreased by 2.77 (± 0.52; for SD 2.18±0.49) days per 442 

100 km northwards, respectively, in year 2016. The latitudinal slopes were not statistically different 443 

between the years (Figure 7, Table 6, tested during Table 6 analyses). There were no differences 444 

between latitudinal trends of field observations and the corresponding GCC and RCC-based estimates 445 

(UD and budburst, SOS and budburst, and EOSr and yellowing; interactions were not significant, not 446 

shown). POP and RD also had significant latitudinal relationships, but EOS and SD did not (Appendix C.3). 447 

Interestingly, the residual standard errors (RSEs) of the camera derived latitudinal relationships for SOS 448 
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and UD were almost as small as those of the field observed budburst date, and EOSr and SD had even a 449 

smaller RSE than the field observed leaf fall date.  450 

 451 
Table 6 Latitude relationships of the phenological transition dates of season. Budburst and yellowing 452 
dates are estimated from field observations in the phenological network in Finland. Others are extracted 453 
from image time series. Values in parentheses are standard errors of estimates. *p<0.1; 

**
p<0.05; 454 

***
p<0.01. Units of dependent variables are numbers of days for EOSr-SOS and DOY for others. Note, 455 

latitudinal slopes are composed of two species, B. pubescent in north and B. pendula in south. 456 

Dependent variable (DOY) 

 
EOSr-SOS SOS EOSr UD SD Budburst Yellowing 

Intercept (2016) 462.73
***

 -10.41 453.74
***

 -8.66 -13.53 11.48 468.20
***

 

 
(44.82) (30.03) (37.08) (28.28) (35.25) (19.05) (35.76) 

Lat. (100 km) -4.81
***

 2.07
***

 -2.77
***

 1.94
***

 2.18
***

 1.69
***

 -3.01
***

 

 
(0.63) (0.42) (0.52) (0.40) (0.49) (0.27) (0.50) 

2015 37.38 20.08 27.44 -22.38 -24.77 -36.01 -52.38 

 
(71.44) (47.07) (57.53) (47.23) (53.63) (26.13) (48.57) 

Lat:2015 -0.56 -0.13 -0.27 0.38 0.53 0.59 0.86 

 
(0.99) (0.65) (0.80) (0.65) (0.75) (0.37) (0.69) 

Observations 17 19 19 18 20 52 43 

R
2
 0.90 0.83 0.79 0.82 0.83 0.74 0.65 

Adjusted R
2
 0.87 0.80 0.75 0.78 0.80 0.72 0.63 

Residual Std. Error 7.51 5.04 6.21 4.74 5.91 4.51 7.72 

F Statistic 38.23
***

 24.99
***

 18.76
***

 20.67
***

 26.66
***

 45.07
***

 24.59
***

 

Note: 
*
p<0.1; 

**
p<0.05; 

***
p<0.01 

 457 

 458 

 459 

  460 
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4 Discussion 461 

We used our newly established digital camera network (Peltoniemi et al., 2017) for assessing birch 462 

phenology along a latitudinal transect across Finland. We showed that the network is useful for 463 

monitoring birch phenology, although the site-specific analyses often relied on appearances of small 464 

birches among other vegetation and in different types of positions and environments. This stems from 465 

the fact that birch phenological colour changes were distinctive enough to be discerned from 466 

background and sometimes small targets.  467 

 468 

The networked cameras were particularly useful for detecting the start of the growing season green-up 469 

and the autumnal leaf yellowing. According to our results, UD is able to capture even minor changes in 470 

crown greenness and to date those reliably, on average, UD estimates season start less than 4 days 471 

earlier than the budburst date recorded in the field.  This is close to what has been earlier observed for 472 

ash and beech in Switzerland (Ahrends et al., 2008) and for 13 deciduous sites in eastern North America 473 

(Klosterman et al., 2014). On the other hand, SOS systematically dates the season start approximately 6 474 

days later than the visual and field-based observations and thus provides a reasonable late estimate, 475 

suggesting that the season start should be calculated as the mean of the UD and SOS dates. For typical 476 

seasonal paths of GCC, the extraction of these dates seems to be fairly insensitive to day-to-day 477 

variation of GCC.  478 

 479 

Season end was best estimated with the RCC peak (EOSr) in the autumn, which compared well with the 480 

visually interpreted dates of season end. In practice, we showed no bias of EOSr relative to the date 481 

when 90% leaves were yellow. The indices based on GCC (DD, RD, EOS) turned out to be useless for the 482 

prediction of season end.  483 

 484 

 485 
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 486 

There are various sources of uncertainty in the analyses. Generally, the uncertainties of curves depicting 487 

the season progression, and extractions of key transition dates were surprisingly small. For double 488 

logistic fits, considerable uncertainties were quantified for a few cases where the automated extraction 489 

of transition dates were challenging due to the nature of the analysed GCC time series [Appendix B, due 490 

to unexplained variation of GCC (for SD in Sodankylä 2014), slowly declining season (for DD and or RD: 491 

Hyytiälä, Kenttärova 2016, Paljakka 2015, Suonenjoki 2015 and 2016), or limited availability of data in 492 

spring (for SD: Paljakka 2016, Suonenjoki 2015)]. Otherwise, the typical daily mean GCC data seems to 493 

well support the extraction of transition dates, and considerable uncertainties seem to exist elsewhere 494 

than in curve fits and date extractions. This applies also to the spline fits whereby date extractions at 495 

least partially require subjective selection of smoothing parameter.  496 

 497 

Challenges in discerning spring dates may also arise when conditions in the background of canopies 498 

change considerably during or before budburst. Snow melt in the background of target trees appears to 499 

be the most important factor in this region for biasing the season start estimates. For Värriö site UD 500 

occurred earlier (11.5-13.3 d, depending on year) than the visual observation, which is more than the 501 

average lag across sites (3.5 d). However, for SOS there seemed to be no significant snow induced bias 502 

(Appendix C). For further improvement of extraction algorithms, snow cover changes in the background 503 

of targets should be accounted for, either by more careful selection of the targets or by introducing a 504 

snow detection algorithm (Salvatori et al., 2011, Garvelmann et al., 2013; Arslan et al., 2017). Use of 505 

cameras in conjunction with high-resolution satellite imagery for the detection of the presence of snow 506 

in the vicinity of a camera could resolve some of the challenges. For instance, Sentinel-2 MSI provides an 507 

excellent data source for this and we have an already implemented method (SCAmod, Metsämäki et al., 508 

2015) for deriving information about snow cover in 10m spatial resolution. Use of far and near remote 509 
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sensing methods together would provide spatially) and temporally complementary material,  and could 510 

yield better performing snow and seasonal indices.. 511 

 512 

In our case, conifer background of birch targets had a minor effect on the GCC signal, as GCC and the 513 

extracted transition dates were in good accord with the transition dates that were visually assessed 514 

from the image time series (without any prior knowledge of GCC development) (Suppl. B). During the 515 

budburst of birches, the vegetation in the image background is rarely active, as conifers are not yet 516 

developing new shoots, which makes it easy to distinguish the GCC changes due to birch leaf growth. 517 

Co-occurring GCC changes of conifers (Wingate et al., 2015) potentially associated with photosynthetic 518 

and/or pigment recovery of conifer seem to be small in comparison to GCC changes caused by birch leaf 519 

growth. Possibly, phenological date extraction of midseason phenological phases could benefit from 520 

incorporation of background subtraction using mixing models (Keenan et al., 2013).  521 

 522 

For colour index analyses, the small image elements were sufficient.  However, small movement of the 523 

cameras at Sodankylä wetland site caused particularly uncertain transition date estimates during 2014 524 

(Suppl. B), although the resulting transition date estimates did not differ from the main trends in other 525 

data. The images omitted from the analysis contained a site where unexpected movement of the 526 

camera mast would have obscured the analysis of small and distant targets. These problems may be 527 

partially due to defining too narrow ROI or ROI with too small safety margin to other targets, which 528 

exposes the view to variable set of pixels as the targets move due to wind, and in the longer term due to 529 

growth. Distance from camera to target, on the other hand, tends to even out colour differences. In our 530 

work, we did not find clear effects of colours of distant elements being obscured to the extent it would 531 

have hampered the analysis, but it could be problematic in locations with more frequent occurrence of 532 

excess condensation of air humidity moisture or fogs.  533 

 534 



    

      

28 
 

Other simultaneous phenological events in trees could potentially confound the season start estimation 535 

from images. Flowering of birch occurs nearly simultaneously with budburst, with some variation in the 536 

timing between individual birch trees. As a typical masting tree species, the annual variation of the 537 

amount of male and female flowers of birches can be enormous. In a good flowering year, usually those 538 

with high May temperatures, the amount of catkins is usually several thousands in a single birch (Ranta 539 

et al. 2008, Zamorano et al. 2016). Birch flowering appears brownish and blurry in distant images. GCC 540 

changes due to increased brown tones likely remain small, but large numbers of flowers during masting 541 

years may render small changes of GCC more difficult to discern, and thus could cause a small delay of 542 

UD estimates on those years. For some other species, however, flowering may cause more problems, 543 

and the use of SOS could be a better option.  544 

  545 

Comparisons between cameras and field data are also complicated by uncertainties of field 546 

observations. We did not have camera-observed estimates of phenology from the same trees and years 547 

as the ones available from the phenological observation network, and therefore we compared different 548 

datasets when investigating the latitudinal gradient. Therefore, it is important to understand how 549 

birches in individual sites represent the other birches in the same latitude. Clearly, the best camera-550 

based transition date estimates (UD, EOSr) were within the variation in the dates estimated from the 551 

field observations (Figure 7), although on average a few days earlier and later, respectively. Siljamo et al. 552 

(2008) found out that individual sites represent Betula spp. season start dates with an accuracy of 3-8 553 

days as compared to the regional means, with northern locations such as Finland having smaller 554 

uncertainties. At a single site, our field observations showed that the budburst date varied among tree 555 

individuals of the same Betula spp. by 1.1 days (average of site std. dev. among individuals) and the 556 

yellowing and fall dates by 3 days within the same year. Obviously, such differences are partly driven by 557 

genetic variability among individuals (Rousi and Pusenius, 2005) and partly due to variation in the 558 

growth environment of the trees, for example trees in open environments or surrounded by other 559 



    

      

29 
 

deciduous trees experience earlier budburst in comparison to trees among conifers due to higher sun 560 

exposure. Some of the field observations were made very close to the cameras (at Parkano, Paljakka, 561 

Värriö, Hyytiälä and Suonenjoki), suggesting that the uncertainties at these sites are smaller than that 562 

estimated by Siljamo et al. (2008), likely closer to the lower 3 day boundary of Siljamo et al., 2008. 563 

Uncertainties due to field observations themselves are hard to assess, as the visual assessment is 564 

subjective, albeit informed by guidelines and conducted by experienced personnel. It should also be 565 

noted that the visual interpretation by expert observers from image time series gave similar results to 566 

field observations, which implies that the uncertainties of subjective observations may not be critical for 567 

the conclusions of our study about the usefulness of UD, SOS and EOSr for phenological monitoring. 568 

Further investigations on how well transition dates extracted from image time series represent the 569 

definitions used in particular observation networks obviously require data collection from the same 570 

trees as monitored for phenology.  571 

 572 

Analyses of season stabilization (SD) were less successful than those of UD, SOS, and EOSr, and the 573 

deviations from the corresponding visual estimate (leaves grown) were larger, as also others have found 574 

(Klosterman  et al., 2014). This may be partly due to the less precise observation of the date when leaves 575 

were grown to their full size in the field and more difficult interpretation of the image time series. GCC 576 

also saturate immediately when leaves cover image region, and further changes are not discernible 577 

although leaves still grow. Earlier studies investigating the relationship between leaf traits and GCC have 578 

found a decoupling of GCC from other leaf traits (Keenan et al., 2014; Yang et al. 2014). Keenan et al. 579 

(2014) explained GCC development, showing that GCC becomes insensitive to LAI increases at high LAI, 580 

and thus LAI peaks later than GCC. Leaves also change color during their development. During some 581 

years at some sites we observed a pronounced peak of GCC after the leaf unfolding and maturation 582 

period, which quickly declined to summer level and further but gradually decreased towards autumn, 583 

implying that methods need elaboration to account for the unexpected behaviour. This behaviour 584 
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obviously cannot be properly captured by the double exponential fit, which assumed steady decline of 585 

GCC until DD. Elaboration of methods further could benefit from a priori information about plausible 586 

season end range. The causes of this peak are unclear, but it could be related to the distinctive light 587 

green colour of new leaves, which is subsequently lost with increasing chlorophyll packing to the leaves 588 

along with albedo decrease within high chlorophyll contents (Bray et al., 1966), and possibly due to 589 

changes of leaf surface due to aging. Yang et al. (2014) observed that the chlorophyll peak lags 20 days 590 

behind the GCC peak in white oaks, which could explain the quick decline after the peak. The reasons for 591 

the variable GCC response among the sites and years remain unclear. In previous studies, variants of the 592 

double exponential fits (Elmore et al., 2014; Klosterman et al., 2014) occasionally caught the summer 593 

peak appropriately but then failed for other cases, which could be partially related to this issue.  594 

 595 

Reflectance analyses, such as those conducted with cameras, are sensitive to the spectral distribution of 596 

the exposing radiation. A humped GCC pattern peaking at midday detected by Ahrends et al (2008), may 597 

be an indication of temporal differences in exposing light angle and colour, but it may be due to a low 598 

light exposure of objects that may render GCC analyses unreliable under low light (Sonnentag et al., 599 

2012). Linkosalmi et al. (2016) excluded the dark winter days from the image data series analysed when 600 

they analysed an image time series of Scots pine (10.5281/zenodo.815481) and wetland 601 

(10.5281/zenodo.815485) north from Arctic Circle. Our results, on the other hand, were preconditioned 602 

by the exclusion of pixels with a poor exposure of any of the colour channels (digital number < 30), and 603 

by limiting the images used for the period between 08:00-16:00. Due to this filter, some of the darkest 604 

days were completely excluded at the northernmost sites. Our filter additionally causes the pixel 605 

number within ROI to vary with illumination, but this did not seem to be a significant factor. Therefore, 606 

we consider that our filtering cleaned the GCC time series from (any potential) systematic variation in 607 

GCC, leaving only residual variation that is too small to bias the image analysis and can be party 608 

explained by day-to-day variability in light conditions, e.g. due to cloud cover.  609 
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 610 

Conclusions 611 

 612 

Our results extend the earlier conclusions that the camera-based phenology analysis provides a sound 613 

method for quantitative monitoring of phenology (e.g. Richardson, et al., 2007; Ahrends et al., 2008). 614 

We used networked cameras from a long latitudinal transect to study the phenology of the most widely 615 

spread deciduous species in the boreal zone, and showed that the cameras and targets provide reliable 616 

predictions of the seasonal development of birches in various conditions, particularly for season start 617 

using GCC and season end when using RCC. Small image elements were useful for the analyses, but 618 

analyses should account for their movement in wind, and in the longer term analyses, also tracking of 619 

their growth.  620 

 621 

Moreover, the established network, together with the image analysis methods adopted, provides a 622 

good basis for automated monitoring of key phenological events for birch, which could reduce the costs 623 

of field monitoring. Season start and end dates could also be informative for the forcing of carbon 624 

balance models and in the calibration of phenology models, while we expect midseason transition dates 625 

to be much harder to use. Further research is required to understand how the species-specific 626 

phenological transitions are reflected in remote sensing phenology products (which typically aggregate 627 

signals over wide areas) in spring including nearly simultaneously occurring snow cover changes in 628 

northernmost areas. We consider that networks of modest density such as our network can cover the 629 

phenology of a few dominant tree species in the region, and can thus provide a good basis for the 630 

monitoring of species-specific phenology in the area. 631 

  632 
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interpreted).  641 
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C. Data summary table and additional models of phenological transition dates. 643 
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8 Figure captions 827 

 828 

Figure 1 Locations of sites and cameras and phenological field monitoring plots used in the study. 829 

 830 

 831 

Figure 2 Phenological data from Lammi site (for other sites, see Suppl. B). Top panel: horizontal black 832 

lines refer to visually determined phenological periods from image time periods. Bottom panel: 833 

radiation and air Temperature (T) are 5 day running means. Temperature sums are calculated from daily 834 

mean T with 0 °C threshold (starting from 21st Mar), and with 5 °C threshold (from 1st Jan).  835 

 836 

 837 

Figure 3 Comparison of phenological transition dates. X-axes values (see Table 2) were extracted 838 

automatically from image time series based on cubic spline fits and y-axes values from the same plots 839 

were based on the visual examination of image time series. The solid line is the fitted regression line, 840 

and dash-dot line is 1:1 line. Each site has 1-3 observation years (indicated by different colors). Panel d: 841 

gray symbols indicate visual observation of 10% leaves fallen. 842 

 843 

Figure 4 Comparison of phenological transition dates estimated based on double exponential fits (Gu et 844 

al., 2009) to GCC (X-axis). See Figure 3 for legends and other explanations. 845 

 846 

Figure 5 Comparison of phenological transition dates for end of season dates based on GCC (EOS) with 847 

the visual estimates. See Figure 3 for legends and other explanations. 848 
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 849 

 850 

Figure 6 Fitted splines and extracted phenological transition dates in a South to North (top to bottom) 851 

gradient in Finland. SOS dates (upwards triangles, △) were determined from GCC spline fits and EOSr 852 

dates (downwards triangle, ) from peaks of autumn RCC.  853 

 854 

 855 

Figure 7 Latitudinal gradients in key phenological dates and measurements of corresponding variables in 856 

the field. Regression functions are in Table 6. Year did not significantly interact with latitude in the 857 

models, indicating no slope differences between the years. 858 
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